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Evaluation
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Proof theory is the discipline studying proofs as mathematical objects.
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“Ask three modal logicians what modal logic is, and you are likely to get
at least three different answers.” [Blackburn, de Rijke, Venema, 2001]

Modal languages are simple yet expressive languages for talking about
relational structures.
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Credits: This course is based on a course taught at ESSLLI 2024, which
was prepared and taught in collaboration with Tiziano Dalmonte (Free Uni-
versity of Bozen-Bolzano, ltaly).



This lecture: Sequent Calculus and Modal Logic

> Gentzen’s sequent calculus
> G3-style sequent calculus
> G3-style sequent calculus for modal logics
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Introduced by Gerhard Gentzen in
> As an auxiliary tool for natural deduction normalization
> Used to prove decidability of intuitionistic propositional logic
> : proof of consistency of Peano Arithmetic

In sequent calculus, the basic components of proofs are not formulas (as
in axiomatic systems or natural deduction), but sequents:

M= A
for I', A are (possibly empty, finite) lists/sets/multisets of formulas.

A sequent can be thought of as expressing consequence relation: at
least one formula in A follows from the assumptions in I'.
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Classical propositional logic (CPL)

Atm set of propositional atoms, p € Atm
A:=p|L|AANAJAVAIA-SA
Hilbert-style axiom system [ tgp A

(ANB)—> A
1—-A A>B A

mp

AV (A > L)y

Semantics T |=¢ A
Propositional evaluation A : Atm — {0, 1}

AEp iff  Alp) =1
AEAVB iff AE=AorAEB

Theorem. I kgep A ifand only if I' =¢p A.



Gentzen’s sequent calculus - G1cp

Sequent: [ = A, for I and A lists of formulas

Rules of G1cp:
init iy
p=p 1=
AT = A r=AA T=>AB
N——————ie{1,2) AR
AlNALT = A = AAAB
All=A BIl=A ) M= AA
VL Vo ——————ie{1,2}
AVBIT=A M= AA VA
= AA BI=>A Al=AB
tTTASBISA r=AASB
M= A = A AAT=A = AAA
Wk ————— wkg ——— ot ——mMm ™ ctrg —8 ™
All= A = AA Al A = AA
A,B, X => A = AA BT r=AA Al'= AN

cut
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Gentzen’s sequent calculus - G1cp

Sequent: [ = A, for I and A lists of formulas

Rules of G1cp: Wh‘;ﬁ_
init W’ 4\ 1
p:>pa/ b 1=
A,l= A r=AA T=AB
AN ———————ic{1,2) AR
AfANAL T = A = AAAB
Al=A BI=A - I=AA
v Vi ——ic(1,2)
AVB,I=A M= AA VA /mcmgm&w
= AA BI=A Al=A,B UJYWF
B A—-BIl=A HRFzA,AeB-/}{W b
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r= A = A AATT= A M= AAA
Wk ————— wkg ——— ot ——mMm ™ ctrg —8 ™
ATlT=A = AA ATl=A M= AA
MABYX=A M= AA B, r=a0@ AN =n
ex —— exp cut N\
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Derivations

A derivation, or proof, of ' = A in G1cp is a finite tree whose nodes are
labelled with sequents, and such that:

> The root of the tree is labelled with ' = A
> The leaves are labelled with initial sequents (p = p or L =)

> Each internal node is obtained from its children by the application of
arule of Gicp

The height of a derivation is the length of its maximal branch, minus 1.

We write Fgicp [ = A if there is a derivation of ' = A in G1cp.



Example

AT = A r=AA T=A,B

init Al ie{1,2} AR

p=p PATA AT = A r=AAAB
r=A AAT=A A BYX=A

WKL _— ctr.

AT = A AT=>A ‘T BAYX=A

init

init wki pP=p
9=q _qp=p
p.q=9q  pg=p
p.q=qgAp
PAG.g=qAPp
q.pAg=qAp
"PAGPAG= AP
PAG=qAp
= (praq)—(gArp)

wkp

AR

/\1

ex

ctrp




Soundness and completeness

i(T= A) ArHVA

Theorem (Soundness). If rg1ep I = A then kg i(F = A).

Proof sketch. By showing that the initial sequents are derivable in the
Hilbert system Hcp, and the rules of G1cp preserve derivability in Hcp.

Theorem (Completeness). If T kyep A then tgip [ = A.

Proof sketch. By deriving the axioms and simulating the rules of Hcp.
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Soundness and completeness

i(T= A) ArHVA

Theorem (Soundness). If rgiep I = A then ryp i(F = A)
Proof sketch. By showing that the initial sequents are derivable in the

Hilbert system Hcp, and the rules of G1cp preserve derivability in Hcp

Theorem (Completeness). If T kyep A then tgip [ = A.

Proof sketch. By deriving the axioms and simulating the rules of Hcp
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R is derivable: There is a derivation of C in SC such that every leaf of the
tree is labelled with an initial sequent or a premiss P; of R

SC sequent calculus (set of rules) and Rrule (n >0): R
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Derivable, admissible, eliminable rule

Py ... Py

C
R is derivable: There is a derivation of C in SC such that every leaf of the
tree is labelled with an initial sequent or a premiss P; of R
P4 P Py

Nyl

R is admissible: If each premiss P; i |s derivable in SC, then C is also
derivable in SC.

~ T - S

P4

R is eliminable from SC U {R}: Every derivation in SC U {R } can be
transformed in a derivation in SC

_)A

A

SC sequent calculus (set of rules) and Rrule (n >0): R
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Derivable, admissible, eliminable rule

> If R is derivable in SC then R is admissible in SC

N

?1 ?M C

> If R is eliminable in SC U {R} then R is admissible in SC
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Cut elimination and consistency

R is analytic: If every formula occurring in the premisses of R is a
subformula of some formula occurring in the conclusion.

r=AA BI=A M= AA Al = A
-L cut

A-BTl=A M= AN

> cut is the only non-analytic rule of Gicp
> If we don’t have cut, we cannot derive = L
> If we don’t have cut, we can prove that CPL is consistent

Theorem (Cut). Every derivation in G1cp U {cut} can be transformed into a
derivation in G1cp.
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G3-style sequent calculus

Basic Proof
Theory

Second Edition




Removing the structural rules from Gicp

Sequent: ' = A, for I and A lists of formulas

init

p=p 1o
AT = A r=AA I>AB
N e {1,2) AR
A AALT = A F=AAAB
AF=>A BTl=A T AA
v VR i€{1,2}
AVB.I = A M= AA VA,
r=AA Bl=A AT = A,B
T ALSBISA TS AA-B
r=aA r=A A AT = A Fr=AAA
WK ————— wkg —— ctrp ———8@8@8 — g ———M8™
AT = A F=AA AT = A Fr=AA
rLABY=A F=AAB Fr=AA A=A

cut

eme eXF{F:>A,B,A,I'I rrr=AAN



Removing the structural rules from Gicp
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cut
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Removing the structural rules from Gicp

14 WUL& (# of cccumoman)
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S
init 1L moy
Lp=pA [ i=A
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7!6{1,2] AR
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AlT=A Bl=A = A48,
v VR i €{1,2}
AVvBITI=A = AA VA
r=AA BII=A AlNl=AB
tTTASBIoA r>AA-B

AA?Z=>A Fﬁ%
ctrp ctrg
:>AA All=A = AA




Sequent calculus G3cp

Sequent: ' = A, for I and A multisets of formulas

init

p. = A,p
AB.T = A
“AANBT=A
AT>A BI=A
AVB.I = A
r-~AA Bl=A

Vi

-

A-BIl=A

AR

1y —
1, I=A

rAA T=AB

F=>AAAB
= AAB
TS AAVB
AT =AB
T AASB



Example

init

p=p

init wki

g=q q.p=p
L exL
pa=4q  pa=p
RA P.g=qAPp
"PAGA=qAPp
ex ———mmmm
. _@PAG=qAp
prquq:QAp
Clr

PAG=qAPp

—R

= (pAg)—(gAPp)

wk




Structural properties of G3cp

Py ... Pq
C

R is height-preserving admissible (hp-admissible): If each premiss P; is

derivable in SC with derivations of height of at most h, then C is also

derivable in SC with a derivation of height of at most h.

a] Qa}@ «M]Q

P4 Pm C

SC sequent calculus (set of rules) and Rrule (n > 0): R

Lemma (Weakening). The weakening rules are hp-admissible in G3cp.
Lemma (Contraction). The contraction rules are hp-admissible in G3cp.

Theorem (Cut). The cut rule is admissible in G3cp.



Soundness and completeness

ir=08)=Ar-\/a
Theorem (Soundness). If rgaep ' = A then kg i(F = A).

Theorem (Completeness). If T kgep A then rgaep [ = A.
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Invertibility

Py ... Py
C

R is (height-preserving) invertible: If C is derivable in SC (with a

derivation of height at most h), then every premiss P; is derivable in SC

(with a derivation of height at most h).

SC sequent calculus (set of rules) and Rrule (n >0): R
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Invertibility

Py ... Py
C

R is (height-preserving) invertible: If C is derivable in SC (with a

derivation of height at most h), then every premiss P; is derivable in SC

(with a derivation of height at most h).

SC sequent calculus (set of rules) and Rrule (n >0): R

Example

A=A A.B.T = A
_Al=4 CABT=4
"AABT = A "ANB.T = A

Lemma (Invertibility). All the rules of G3cp are hp-invertible.

iz Why is invertibility important? Interlude: decision procedures



Decision procedures and proof theory
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Desirable properties for proof search

> Termination of backward proof search

~» guaranteed by analyticity, and by the fact that the rules reduce
the complexity of sequents

> Decision procedure by a single proof-search tree: it suffices to
construct one derivation tree to check for derivability

~» guaranteed by invertibility of all the rules

> Countermodel construction from (a leaf of) a failed branch

~» read the formulas in the antecedent as “true”, and those in the
consequent as “false”



Summing up

modu-
larity

counterm.
constr.

termination
proof search

invertible
rules

fml.
interpr.

analyti-
city

G3cp‘ yes ‘ yes ‘ yes ‘ yes, easy! .yes, easy!‘ n/a



G3-style sequent calculus for modal logic
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The S5 cube of modal logics

A:=p|LIAAA|AVA|ASA|DA|GA

HK: axioms and rules from Hcp, plus:
dual ©A & -O-A

k oO(A—-B)—- (oA —-OB) S4 S5

A /
nec —— T
oA

0OA — OA , |

oA - A D= }

A—D0O0A 4--}---- K45 -- KB5
OA — OoA . __K5° /
OA = 0OA K= KB

o A T —~ Q

A ~» Aisderivable from I in HK
For X € {d,t,b,4,5}, +tx A ~» A is derivable from I in HKU X



Kripke models

M=(W,R,v)

> W non-empty set of elements (worlds)
> R binary relation on W (accessibility relation)
> v valuation function W — P(Atm)

Name Axiom Frame condition
d 0A — OA Seriality Vx3y(xRy)
t oA - A Reflexivity Vx(xRx)
b A —-0O0A | Symmetry VxVy(xRy — yRx)
4 OA - Oo0A | Transitivity VxYyV¥z((xRy A yRz) — xRz)
5 OA —» O0A | Euclideaness VYxVyVz((xRy A xRz) — yRz)

Notation. For X € {d,,b, 4,5} We denote by X the class of all models
satisfying all conditions corresponding to the axioms of the logic X



Soundness and completeness

Satisfiability M,w I A

Mwirp iff pev(w)
()

M wiroA iff forallus.t wRu,ur A
M,wir OA iff  there exists us.t. wRuand u - A

Validity in a model MEA iff foralwe M, M,wi- A
Validity in a class of models Ex A iff foral Me X, MEA
Logical consequence

for all M € X, for all w e M,

PExA M i A wr Bforall BeT, then Mw i A

Theorem. '+x A ifandonlyif TE=x A



Sequent calculi for (some) modal logics

For simplicity, we define the rules for the o-only fragment.
Some references: [Ohnishi, Matsumoto, 1957], [Fitting, 1983], [Takano, 1992]
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Sequent calculi for (some) modal logics

For simplicity, we define the rules for the o-only fragment.
Some references: , ,

Bi,....,Bh=A

G3K = G3cp + k forn>0
[L,oBy,...,0B8,=>0A,A

Notation. Given ¥ = By,...,B, (forn > 0), let oX = OBy, ...,08B,.
The rule k can be written as

2= A
k—
LoxX=oA A

All=A o= A ox = A,oll
t 4 45
oA, = A LoxX=0o0AA [LoX=oA,alA

> Sequent calculus for T: G3K U {t}
> Sequent calculus for S4: G3cp U {4, t}
> Sequent calculus for S5: G3cp U {45, 1}



Sequent calculus for K

Y= A

G3K = G3cp + kmm————
[LOoX=0AA

Structural properties of G3cp

> Weakening and contraction are hp-admissible
> All propositional rules are hp-invertible (but not the rule k)
> Cut is admissible

Theorem (Soundness). If rgak = A then +i(l = A).

Theorem (Completeness). If T+ A then rgx I = A.



Invertibility
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K = —— "
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Invertibility

= A

G3K = G3cp + k—————
[LOoYX=0AA

Rule k is not invertible

Consequently:
> One failed proof is not sufficient to ensure non-derivability
> Hence, in particular, it does not provide a countermodel
> Backward proof-search in G3K requires backtracking



Example

Is the sequent O(p v q) = Op v Oq derivable in G3K?

d(pvg) = Ok, B9

[

O(pvg) » 0h vHq

Ve



Summing up

fml. invertible | analyti- | termination counterm. modu-

interpr. rules city proof search constr. larity
G3cp yes yes yes yes, easy! yes, easy! n/a
G3K ‘ yes ‘ no ‘ yes ‘ yes, easy! | yes, not easy no



End of content for today’s lecture!

Questions?



1. Show that the axiom o(p — q) — (op — Oq) and the rule are

oA
derivable in G3K.

2. We wish to show that G3T is not contraction-free complete
Sequent calculus G3T adds the following two rules to G3cp:

Y= A All=A
k t
[oX = oA A oA, = A
We consider formula o(p A (op — L) — L, which is valid in T. Show that:
a) The sequent = O(p A (Op — L) — L is derivable in G3T U {ctr., ctrg}
b) The sequent = oO(p A (Op — L) — L is not derivable in G3T
c) If we substitute rule t with the following rule t' in G3T, then sequent
= 0O(p A (Op — L) — L becomes derivable (without contraction):
A0A T = A
DA, = A
3. Next, we wish to show that G3S5 is not cut-free complete. Sequent calculus
G3S5 adds the following rules to G3cp:
ATlT=A ox = A,ol
t 45
oA, = A [L,oX = oA, all,A
We consider formula p v o(gp — L), which is valid in S5. Show that:

a) The sequent p v o(op — L) is derivable in G3S5 U {cut}
b) The sequent p v O(Op — 1) is not derivable in G3S5

t




