Proof Theory of Modal Logic

Lecture 4
Semantic Completeness

Marianna Girlando

ILLC, Universtiy of Amsterdam

5th Tsinghua Logic Summer School Beijing, 14 - 18 July 2025

Recap

		fml. interpr.	invertible rules	analyti- city	termination proof search	counterm. constr.	modu- larity
	G3cp	yes	yes	yes	yes, easy!	yes, easy!	n/a
-	G3K	yes	no	yes	yes, easy!	yes, not easy	no
nerke	NK ∪ X [◊]	yes	yes	yes	?	?	45-clause
02	labK∪X	no	yes	yes	?	?	yes

Today's lecture: Semantic Completeness

- Semantic completeness for NK
- Semantic completeness for labK4

In the literature

For nested sequents: [Bruünler, 2009]: semantic completeness via terminating proof search for all the logics in the S5-cube

For labelled calculi:

- [Negri, 2005]: Minimality argument ensuring for some logics in the S5-cube (K, T, S4, S5);
- Negri, 2014]: Semantic completeness via terminating proof search for intermediate logics;
- ▶ [Garg, Genovese and Negri, 2012]: Decision procedures via termination for multi-modal logics (without symmetry).

Semantic completeness for NK

NK: recap

$$A_1, \ldots, A_m, [\Delta_1], \ldots, [\Delta_n]$$

NK: recap

$$A_{1}, \dots, A_{m}, [\Delta_{1}], \dots, [\Delta_{n}]$$

$$\operatorname{init} \frac{}{\Gamma\{\rho, \overline{\rho}\}} \wedge \frac{\Gamma\{A\} - \Gamma\{B\}}{\Gamma\{A \wedge B\}} \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}}$$

$$= \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} \wedge \frac{\Gamma\{\diamondsuit A, [A, \Delta]\}}{\Gamma\{\diamondsuit A, [\Delta]\}}$$

NK: recap

$$A_{1}, \dots, A_{m}, [\Delta_{1}], \dots, [\Delta_{n}]$$

$$init \frac{}{\Gamma\{\rho, \overline{\rho}\}} \wedge \frac{\Gamma\{A\} - \Gamma\{B\}}{\Gamma\{A \wedge B\}} \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}}$$

$$= \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} \wedge \frac{\Gamma\{\diamondsuit A, [A, \Delta]\}}{\Gamma\{\diamondsuit A, [\Delta]\}}$$

For a nested sequent Γ and a model $\mathcal{M} = \langle W, R, v \rangle$, an \mathcal{M} -map for Γ is a map $f : tr(\Gamma) \to W$ such that whenever δ is a child of γ in $tr(\Gamma)$, then $f(\gamma)Rf(\delta)$.

A nested sequent Γ is satisfied by an \mathcal{M} -map for Γ iff

$$\underline{\mathcal{M}}, f(\underline{\delta}) \models B$$
, for some $\underline{\delta} \in tr(\Gamma)$, for some $B \in \delta$

A nested sequent Γ is refuted by an \mathcal{M} -map for Γ iff

$$\mathcal{M}, f(\delta) \not\models B$$
, for all $\delta \in tr(\Gamma)$, for all $B \in \delta$

A nested sequent is valid iff it is satisfied by all \mathcal{M} -maps for Γ , for all models \mathcal{M} .

Roadmap

Semantic completeness

Lemma (Proof or Countermodel). For Γ nested sequent, either Γ is derivable in NK or there is an \mathcal{M} -map for Γ such that Γ is refuted by the \mathcal{M} -map.

Mext slide.

Theorem (Semantic Completeness). If $\Gamma \models A$, then the nested sequent $\overline{\Gamma} \lor A$ is derivable in NK.

Proof. If
$$\Gamma \vee A$$
 is not derivable in NK, then $\Gamma \not\models A$.

Suppose $\Gamma \vee A$ is not derivable.

By Por C German, there is model H^{\times}

and H^{\times} -map f^{\times} s.t.

 $H, w \models \Gamma$ and $H, w \not\models R$
 $H^{\times}, f^{\times}(S) \not\models G$ for all $G \in \Gamma$
 $H^{\times}, f^{\times}(S) \not\models G$ for all $G \in \Gamma$

Proof or countermodel

Lemma (Proof or Countermodel). For Γ nested sequent, either Γ is derivable in NK or there is an \mathcal{M} -map for Γ such that Γ is refuted by the \mathcal{M} -map.

Proof or countermodel

Lemma (Proof or Countermodel). For Γ nested sequent, either Γ is derivable in NK or there is an \mathcal{M} -map for Γ such that Γ is refuted by the \mathcal{M} -map.

Proof or countermodel

FINITE

Lemma (Proof or Countermodel). For Γ nested sequent, either Γ is derivable in NK or there is an \mathcal{M} -map for Γ such that Γ is refuted by the \mathcal{M} -map.

Proof (sketch). Algorithm implementing froof search in MK ALGORITHM finite

Proof or countermodel

FINITE

Lemma (Proof or Countermodel). For Γ nested sequent, either Γ is derivable in NK or there is an \mathcal{M} -map for Γ such that Γ is refuted by the \mathcal{M} -map.

Proof (sketch). Algorithm implementing froof search in wh ALGORITHM * decision procedure for K!

Termination

init
$$\frac{\Gamma\{A\}}{\Gamma\{\rho,\overline{\rho}\}}$$
 $\wedge \frac{\Gamma\{A\}}{\Gamma\{A \wedge B\}}$ $\vee \frac{\Gamma\{A,B\}}{\Gamma\{A \vee B\}}$ $\vee \frac{\Gamma\{A,B\}}{\Gamma\{A,B\}}$ \vee

A cumulative version of NK

Rules of NK^c

$$\inf \frac{}{\Gamma\{\rho,\overline{\rho}\}} \qquad \wedge \frac{\Gamma\{A \wedge B,A\} \quad \Gamma[A \wedge B,B\}}{\Gamma\{A \wedge B\}} \qquad \vee \frac{\Gamma[A \vee B,A,B\}}{\Gamma\{A \vee B\}}$$

$$\square \frac{\Gamma[\square A, [A]\}}{\Gamma\{\square A\}} \qquad \Diamond \frac{\Gamma\{\Diamond A, [A,\Delta]\}}{\Gamma\{\Diamond A, [\Delta]\}}$$

A cumulative version of NK

Rules of NK^c

$$\begin{split} & \operatorname{init} \frac{}{\Gamma\{\rho, \overline{\rho}\}} & & \wedge \frac{\Gamma\{A \wedge B, A\} - \Gamma\{A \wedge B, B\}}{\Gamma\{A \wedge B\}} - \vee \frac{\Gamma\{A \vee B, A, B\}}{\Gamma\{A \vee B\}} \\ & & - \frac{\Gamma\{\Box A, [A]\}}{\Gamma\{\Box A\}} - \Diamond \frac{\Gamma\{\Diamond A, [A, \Delta]\}}{\Gamma\{\Diamond A, [\Delta]\}} \end{split}$$

Proposition. NK and NK^c are equivalent.

A cumulative version of NK

Rules of NK^c

Proposition. NK and NK^c are equivalent.

The set-nested sequent of a nested sequent $A_1, \ldots, A_n, [\Delta_1], \ldots, [\Delta_m]$ is the underlying set $A_1, \ldots, A_n, [\Lambda_1], \ldots, [\Lambda_m]$, where $\Lambda_1, \ldots, \Lambda_m$ are the set-nested sequents of $\Delta_1, \ldots, \Delta_m$.

A cumulative version of NK

Rules of NK^c

Proposition. NK and NK^c are equivalent.

The set-nested sequent of a nested sequent $A_1, \ldots, A_n, [\Delta_1], \ldots, [\Delta_m]$ is the underlying set $A_1, \ldots, A_n, [\Lambda_1], \ldots, [\Lambda_m]$, where $\Lambda_1, \ldots, \Lambda_m$ are the set-nested sequents of $\Delta_1, \ldots, \Delta_m$.

A rule application is redundant if the set-nested sequent of one of its premisses is the same as the set-nested sequent of its conclusion.

Avoid redundant applications of the rules!

$$\Gamma = \frac{\langle (h \vee \pi), [h \vee \pi, h \vee \pi, h, \pi, q]}{\langle (h \vee \pi), [h \vee \pi, h, \pi, q]}$$

$$\frac{\langle (h \vee \pi), [h \vee \pi, h, \pi, q]}{\langle (h \vee \pi), [h \vee \pi, q]}$$

$$\frac{\langle (h \vee \pi), [q]}{\langle (h \vee \pi), [q]}$$

Aset - NS of Γ = Set - NS of Δ

$$\Gamma = \frac{\Box h, [h], [h]}{\Box h}$$

$$\frac{\Box h, [h]}{\Box h}$$

$$\frac{\Box h, [h]}{\Box h}$$

A terminating proof search algorithm for NK^c

Is Γ derivable in NK^c?

- 0. Place $\Gamma_0 = \Gamma$ at the root of \mathcal{T} .
- 1. For every topmost nested sequent Γ_i of \mathcal{T} , apply as much as possible non-redundant instances of the rules: $\land, \lor, \diamondsuit$.
- 2. If every topmost nested sequent of \mathcal{T} is initial, terminate. $\rightsquigarrow \Gamma_0$ is derivable in NK°.
- 3. Otherwise, pick a non-initial topmost nested sequent Γ_k of \mathcal{T} .
 - a) If there is a non-redundant □-rule instances that can be applied, apply one such instance. Go to Step 1.
 - b) Otherwise terminate. $\rightsquigarrow \Gamma_0$ is not derivable in NK^c.

A terminating proof search algorithm for NK^c

Is Γ derivable in NK^c?

- 0. Place $\Gamma_0 = \Gamma$ at the root of \mathcal{T} .
- 1. For every topmost nested sequent Γ_i of \mathcal{T} , apply as much as possible non-redundant instances of the rules: \land , \lor , \diamondsuit .
- 2.) If every topmost nested sequent of $\mathcal T$ is initial, terminate.
 - \rightsquigarrow Γ_0 is derivable in NK^c.
- (3.) Otherwise, pick a non-initial topmost nested sequent Γ_k of \mathcal{T} .
 - a) If there is a non-redundant □-rule instances that can be applied, apply one such instance. Go to Step 1.
 - b) Otherwise terminate. $\rightsquigarrow \Gamma_0$ is not derivable in NK°. constructed using the algorithm

Theorem (Termination). Root-first proof search in NK^{eV}terminates in a finite number of steps.

Constructing a countermodel

Lemma. If proof search terminates in step 3, then there is an \mathcal{M} -map for Γ_0 such that Γ_0 is refuted by the \mathcal{M} -map.

Proof. Consider Γ_k , the non-initial topmost nested sequent where the algorithm stopped. We define the model $\mathcal{M}^{\times} = \langle W^{\times}, R^{\times}, v^{\times} \rangle$ as follows:

- ▶ $\delta R^{\times} \gamma$ iff γ is a child of δ in $tr(\Gamma_k)$

Moreover, let $\underline{f^{\times}}$ be the \mathcal{M}^{\times} -map for Γ_k defined by setting $\underline{f^{\times}(\delta) = \delta}$, for every $\delta \in tr(\overline{\Gamma_k})$.

Constructing a countermodel

Lemma. If proof search terminates in step 3, then there is an \mathcal{M} -map for Γ_0 such that Γ_0 is refuted by the \mathcal{M} -map.

Proof. Consider Γ_k , the non-initial topmost nested sequent where the algorithm stopped. We define the model $\mathcal{M}^{\times} = \langle W^{\times}, R^{\times}, v^{\times} \rangle$ as follows:

- ▶ $\delta R^{\times} \gamma$ iff γ is a child of δ in $tr(\Gamma_k)$

Moreover, let f^{\times} be the \mathcal{M}^{\times} -map for Γ_k defined by setting $f^{\times}(\delta) = \delta$, for every $\delta \in tr(\Gamma_k)$.

We have to prove that \mathcal{M}^{\times} is a Kripke model (easy) and that f^{\times} is an \mathcal{M}^{\times} -map (also easy).

Constructing a countermodel

Lemma. If proof search terminates in step 3, then there is an \mathcal{M} -map for Γ_0 such that Γ_0 is refuted by the \mathcal{M} -map.

Proof. Consider Γ_k , the non-initial topmost nested sequent where the algorithm stopped. We define the model $\mathcal{M}^{\times} = \langle W^{\times}, R^{\times}, v^{\times} \rangle$ as follows:

- ▶ $\delta R^{\times} \gamma$ iff γ is a child of δ in $tr(\Gamma_k)$
- $\triangleright (\bar{v}^{\times}(\delta)) = \{p \mid \bar{p} \in \delta\}$

Moreover, let f^{\times} be the \mathcal{M}^{\times} -map for Γ_k defined by setting $f^{\times}(\delta) = \delta$, for every $\delta \in tr(\Gamma_k)$.

We have to prove that \mathcal{M}^{\times} is a Kripke model (easy) and that f^{\times} is an \mathcal{M}^{\times} -map (also easy).

Next, we need to prove that, for all formulas A:

if
$$A \in \delta \in tr(\Gamma_k)$$
 then $\mathcal{M}^{\times}, f^{\times}(\delta) \not\models A$

Example NK°

Semantic completeness for labK4

Rules of labK4, a proof system for K4

$$\begin{array}{c} \operatorname{init} \overline{\mathcal{R}, x : p, \Gamma \Rightarrow \Delta, x : p} \\ \\ \frac{\mathcal{R}, x : A, x : B, \Gamma \Rightarrow \Delta}{\mathcal{R}, x : A \land B, \Gamma \Rightarrow \Delta} \\ \\ \vee_{\mathsf{L}} \frac{\mathcal{R}, x : A, \wedge B, \Gamma \Rightarrow \Delta}{\mathcal{R}, x : A \land B, \Gamma \Rightarrow \Delta} \\ \\ \vee_{\mathsf{L}} \frac{\mathcal{R}, x : A, \Gamma \Rightarrow \Delta}{\mathcal{R}, x : A \land B, \Gamma \Rightarrow \Delta} \\ \\ \rightarrow_{\mathsf{L}} \frac{\mathcal{R}, x : A, \Gamma \Rightarrow \Delta}{\mathcal{R}, x : A \lor B, \Gamma \Rightarrow \Delta} \\ \\ \rightarrow_{\mathsf{L}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \quad \mathcal{R}, x : B, \Gamma \Rightarrow \Delta}{\mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta} \\ \\ \rightarrow_{\mathsf{L}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \quad \mathcal{R}, x : B, \Gamma \Rightarrow \Delta}{\mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta} \\ \\ \rightarrow_{\mathsf{L}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \quad \mathcal{R}, x : B, \Gamma \Rightarrow \Delta}{\mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta} \\ \\ \rightarrow_{\mathsf{L}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \quad \mathcal{R}, \Lambda : B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}$$

y fresh means $y \neq x$ and y does not occur in $\mathcal{R} \cup \Gamma \cup \Delta$

Sources of non-termination

```
\vdots
\frac{1:2, 1:\Box q, 2:q, 2:q, 2:q \Rightarrow}{1:2, 1:\Box q, 2:q, 2:q \Rightarrow}
\frac{1:2, 1:\Box q, 2:q \Rightarrow}{1:2, 1:\Box q, 2:q \Rightarrow}
\frac{1:2, 1:\Box q \Rightarrow}{1:2, 1:\Box q \Rightarrow}
```

labK4^c, a cumulative version of labK4

$$\begin{array}{c} \inf \frac{1}{\mathcal{R}, x : p, \Gamma \Rightarrow \Delta, x : p} \\ & \stackrel{\perp}{\mathcal{R}, x : A \land B, x : A, x : B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\wedge}{\mathcal{R}, x : A \land B, x : A, x : B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\wedge}{\mathcal{R}, x : A \land B, x : A \land B, x : A \land B, x : A \land B} \\ & \stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B, x : A \land B} \\ & \stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \lor B, x : A \lor B} \\ & \stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \lor B} \\ & \stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \lor B} \\ & \stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \lor B} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A, \pi : A \lor B, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A, \pi : A,$$

y fresh means $y \neq x$ and y does not occur in $\mathcal{R} \cup \Gamma \cup \Delta$

Redundant rule applications

Intuitively: A rule application R is redundant at a sequent \mathcal{S} if \mathcal{S} already contains the formulas that would be introduced in one premiss of R.

Redundant rule applications

Intuitively: A rule application R is redundant at a sequent \mathcal{S} if \mathcal{S} already contains the formulas that would be introduced in one premiss of R.

Formally: A rule application R to formulas in $S = R, \Gamma \Rightarrow \Delta$ is redundant if condition (R) is satisfied:

- (tr) If xRy and yRz occur in \mathcal{R} , then xRz occurs in \mathcal{R} ;
- $(Λ_L)$ If $\underline{x:A \land B}$ occurs in Γ, then both x:A and x:B occur in Γ;
- (\land _R) If $x:A \land B$ occurs in \triangle , then x:A occurs in \triangle or x:B occur in \triangle ; (...)
- (\Box_L) If xRy occurs in R and $x:\Box A$ occurs in Γ , then y:A occurs in Γ ;
- (\square_R) If $x:\square A$ occurs in Δ , then there is a y such that xRy occurs in R and y:A occurs in Δ .

Avoid redundant applications of the rules!

Sources of non-termination

```
\begin{array}{c} 33,2R3,0R2,1R2,0R1 \Rightarrow 0: \Diamond \Box p,1:\bot,1:\Box p,2:p,2:\Box p,3:p,3:\Box p \\ \hline 0R3,2R3,0R2,1R2,0R1 \Rightarrow 0: \Diamond \Box p,1:\bot,1:\Box p,2:p,2:\Box p,3:p \\ \hline 2R3,0R2,1R2,0R1 \Rightarrow 0: \Diamond \Box p,1:\bot,1:\Box p,2:p,2:\Box p,3:p \\ \hline \end{array}
                      \overline{0R2}, 1R2, 0R1 \Rightarrow 0: \Diamond \Box p, 1:\bot, 1:\Box p, 2:p, 2:\Box p
                              0R2, 1R2, 0R1 \Rightarrow \underline{0:\Diamond \Box p}, 1:\bot, 1:\Box p, 2:p
                                       1R2,0R1 \Rightarrow 0: \Diamond \Box p,1:\bot,1:\Box p,2:p
                                                    0R1 \Rightarrow 0: \Diamond \Box p, \overline{1:\bot, \underline{1}:\Box p}
                                                            0R1 \Rightarrow 0: \Diamond \Box p, \overline{1:\bot}
```

Limit applications of \square_R and \diamondsuit_L

$$\frac{X \cap Y, X, 1 \to \Delta, y \cdot A}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : \Box A} \text{ y fresh}$$

Limit applications of \square_R and \diamondsuit_L

Formally: A rule application R to formulas in $S = \mathcal{R}, \Gamma \Rightarrow \Delta$ is redundant if condition (R) is satisfied:

 (\square_R) If $x:\square A$ occurs in Δ , then there is a y such that xRy occurs in $\mathcal R$ and y:A occurs in Δ .

Limit applications of \square_R and \diamondsuit_L

$$\{G \mid K : G \in \Gamma \} = \{E \mid x : E \in \Gamma \}$$

and $\{D \mid K : D \in \Delta \} = \{F \mid x : F \in \Delta \}$

Formally: A rule application R to formulas in S = R, $\Gamma \Rightarrow \Delta$ is redundant if condition (R) is satisfied:

(
$$\square_R$$
) If $x:\square A$ occurs in Δ , then there is a y such that xRy occurs in R and $\underline{y:A}$ occurs in Δ .

- (\square_R) If $x:\square A$ occurs in Δ , then either
 - a) there is a \underline{k} such that \underline{kRx} occurs in \mathcal{R} and $\underline{k \sim x}$ otherwise $\overline{\mathcal{B}}$ there is a \underline{y} such that \overline{xRy} occurs in \mathcal{R} and $\overline{y:A}$ occurs in Δ .

If a) holds, we say that x is a copy of k at S

A terminating proof search algorithm for labK4

Is $x:\Gamma \Rightarrow x:A$ derivable in labK4?

- 0. Place $S_0 = x:\Gamma \Rightarrow x:A$ at the root of \mathcal{T} .
- 1. For every topmost labelled sequent S_i of T, apply as much as possible non-redundant instances of the rules:

$$tr, \land_L, \land_R, \lor_L, \lor_R, \rightarrow_L, \rightarrow_R, \Box_L, \diamondsuit_R.$$

- If every topmost labelled sequent of T is initial, terminate.
 x: Γ ⇒ x: A is derivable in labK4.
- 3. Otherwise, pick a non-initial topmost labelled sequent S_k of \mathcal{T} .
 - a) If there are non-redundant □_R- or ⋄_L- rule instances that can be applied, apply one such instance. Go to Step 1.
 - b) Otherwise terminate. $\rightsquigarrow x:\Gamma \Rightarrow x:A$ is not derivable in labK4.

A terminating proof search algorithm for labK4

Is $x:\Gamma \Rightarrow x:A$ derivable in labK4?

- 0. Place $S_0 = x:\Gamma \Rightarrow x:A$ at the root of \mathcal{T} .
- 1. For every topmost labelled sequent S_i of T, apply as much as possible non-redundant instances of the rules:

$$tr, \wedge_L, \wedge_R, \vee_L, \vee_R, \rightarrow_L, \rightarrow_R, \square_L, \diamondsuit_R.$$

- 2. If every topmost labelled sequent of $\ensuremath{\mathcal{T}}$ is initial, terminate.
 - $\rightsquigarrow x:\Gamma \Rightarrow x:A$ is derivable in labK4.
- 3. Otherwise, pick a non-initial topmost labelled sequent S_k of T.
 - a) If there are non-redundant □_R- or ⋄_L- rule instances that can be applied, apply one such instance. Go to Step 1.
 - b) Otherwise terminate. $\rightsquigarrow x:\Gamma \Rightarrow x:A$ is not derivable in labK4.

Theorem (Termination). Root-first proof search in labK4^c terminates in a finite number of steps.

Validity of sequents

Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$, and $\rho : \mathsf{Lb}(S) \to W$ (interpretation).

Validity of sequents

Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$, and $\rho : \mathsf{Lb}(S) \to W$ (interpretation).

Satisfiability of labelled formulas at ${\mathcal M}$ under ρ :

$$\mathcal{M}, \rho \Vdash xRy \quad \text{iff} \quad \rho(x)R\rho(y)$$

 $\mathcal{M}, \rho \Vdash x:A \quad \text{iff} \quad \mathcal{M}, \rho(x) \Vdash A$

Validity of sequents

Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$, and $\rho : \mathsf{Lb}(S) \to W$ (interpretation).

Satisfiability of labelled formulas at ${\mathcal M}$ under ρ :

$$\mathcal{M}, \rho \Vdash xRy \quad \text{iff} \quad \rho(x)R\rho(y)$$

 $\mathcal{M}, \rho \Vdash x:A \quad \text{iff} \quad \mathcal{M}, \rho(x) \Vdash A$

Satisfiability of sequents at M under ρ (φ is xRy or x:A):

$$\mathcal{M}, \rho \Vdash \mathcal{R}, \Gamma \Rightarrow \Delta$$
 iff

if for all $\varphi \in \mathcal{R} \cup \Gamma$ it holds that $\mathcal{M}, \rho \Vdash \varphi$,

then for some $x:D \in \Delta$ it holds that $\mathcal{M}, \rho \Vdash x:D$.

Validity of sequents

Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$, and $\rho : \mathsf{Lb}(S) \to W$ (interpretation).

Satisfiability of labelled formulas at $\mathcal M$ under ρ :

$$\mathcal{M}, \rho \Vdash xRy \quad \text{iff} \quad \rho(x)R\rho(y)$$

 $\mathcal{M}, \rho \Vdash x:A \quad \text{iff} \quad \mathcal{M}, \rho(x) \Vdash A$

Satisfiability of sequents at \mathcal{M} under ρ (φ is xRy or x:A):

$$\mathcal{M}, \rho \Vdash \mathcal{R}, \Gamma \Rightarrow \Delta$$
 iff

if for all $\varphi \in \mathcal{R} \cup \Gamma$ it holds that $\mathcal{M}, \rho \Vdash \varphi$, then for some $x:D \in \Delta$ it holds that $\mathcal{M}, \rho \Vdash x:D$.

A sequent $\mathcal{R}, \Gamma \Rightarrow \Delta$ has a countermodel iff there are \mathcal{M}, ρ such that:

- $\triangleright \mathcal{M}, \rho \models \varphi$, for all $\varphi \in \mathcal{R} \cup \Gamma$, and
- ▶ $\mathcal{M}, \rho \not\models x:D$, for all $x:D \in \Delta$.

Validity of sequents

Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(\mathcal{S}) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}, \text{ and } \rho : \mathsf{Lb}(\mathcal{S}) \to W \text{ (interpretation)}.$

Satisfiability of labelled formulas at \mathcal{M} under ρ :

$$\mathcal{M}, \rho \Vdash xRy \quad \text{iff} \quad \rho(x)R\rho(y)$$

 $\mathcal{M}, \rho \Vdash x:A \quad \text{iff} \quad \mathcal{M}, \rho(x) \Vdash A$

Satisfiability of sequents at \mathcal{M} under ρ (φ is xRy or x:A):

$$\mathcal{M}, \rho \Vdash \mathcal{R}, \Gamma \Rightarrow \Delta$$
 iff

if for all $\varphi \in \mathcal{R} \cup \Gamma$ it holds that $\mathcal{M}, \rho \Vdash \varphi$, then for some $x:D \in \Delta$ it holds that $\mathcal{M}, \rho \Vdash x:D$.

A sequent $\mathcal{R}, \Gamma \Rightarrow \Delta$ has a countermodel iff there are \mathcal{M}, ρ such that: h

- ▶ $\mathcal{M}, \rho \models \varphi$, for all $\varphi \in \mathcal{R} \cup \Gamma$, and ▶ $\mathcal{M}, \rho \not\models x:D$, for all $x:D \in \Delta$.

Validity of sequents in a class of frames X:

$$\models_{\mathcal{X}} \mathcal{R}, \Gamma \Rightarrow \Delta$$
 iff for any ρ and any $\mathcal{M} \in \mathcal{X}, \ \mathcal{M}, \rho \Vdash \mathcal{R}, \Gamma \Rightarrow \Delta$

Constructing a countermodel

Lemma. If proof search terminates in step 3, then S_0 has a countermodel.

Proof. Consider S_k , the non-initial topmost nested sequent where the algorithm stopped. We define the model $\mathcal{M}^{\times} = \langle W^{\times}, R^{\times}, v^{\times} \rangle$ as follows:

- $V W^{\times} = \{x \mid x \text{ occurs in } S\};$
- ▶ To define R[×], first define:
 - $xR_1^{\times}y$ iff xRy occurs in \mathcal{R} ;
 - $xR_2^{\times}k$ iff x is a □-copy (or \diamondsuit -copy) of k.

 \mathcal{R}^{\times} is the transitive closure of $R_1^{\times} \cup R_2^{\times}$.

v[×](x) = {p | x:p occurs in Γ}.

Constructing a countermodel

Lemma. If proof search terminates in step 3, then S_0 has a countermodel.

Proof. Consider S_k , the non-initial topmost nested sequent where the algorithm stopped. We define the model $\mathcal{M}^{\times} = \langle W^{\times}, R^{\times}, v^{\times} \rangle$ as follows:

- \triangleright $W^{\times} = \{x \mid x \text{ occurs in } S\};$
- ▶ To define R[×], first define:
 - $xR_1^{\times}y$ iff xRy occurs in \mathcal{R} ;
 - $xR_2^{\times}k$ iff x is a □-copy (or \diamondsuit -copy) of k.

 \mathcal{R}^{\times} is the transitive closure of $R_1^{\times} \cup R_2^{\times}$.

 $v^{\times}(x) = \{p \mid x:p \text{ occurs in } \Gamma\}.$

It is easy to verify that \mathcal{M}^{\times} satisfies the frame condition of transitivity.

Constructing a countermodel

Lemma. If proof search terminates in step 3, then S_0 has a countermodel.

Proof. Consider S_k , the non-initial topmost nested sequent where the algorithm stopped. We define the model $\mathcal{M}^{\times} = \langle W^{\times}, R^{\times}, v^{\times} \rangle$ as follows:

- $V W^{\times} = \{x \mid x \text{ occurs in } S\};$
- ▶ To define R[×], first define:
 - $xR_1^{\times}y$ iff xRy occurs in \mathcal{R} ;
 - $xR_2^{\times}k$ iff x is a □-copy (or \diamondsuit -copy) of k.

 \mathcal{R}^{\times} is the transitive closure of $R_1^{\times} \cup R_2^{\times}$.

It is easy to verify that \mathcal{M}^{\times} satisfies the frame condition of transitivity.

Take $\rho^{\times}(x) = x$, for each label x occurring in S. Then:

- ▶ If x:A occurs in Γ , then $\mathcal{M}^{\times}, \rho^{\times} \models x:A$
- ▶ If x:A occurs in Δ , then $\mathcal{M}^{\times}, \rho^{\times} \not\models x:A$

Example

Example

Example

Summing up

End of content for today's lecture!

Questions?

Exercises

- Check whether ◊□(p ∨ □(p → ⊥)) is valid in K4 using the terminating algorithm for labK4. If the formula is not valid, produce a countermodel.
- 2. Let \mathcal{M}^{\times} be the countermodel for a labelled sequent \mathcal{S} . Verify that \mathcal{M}^{\times} satisfies the frame condition of transitivity. Then, for $\rho^{\times}(x) = x$, for each label x occurring in \mathcal{S} , verify that the Truth Lemma holds, for the cases:
 - ▶ If $x: \Box A$ occurs in Γ, then $\mathcal{M}^{\times}, \rho^{\times} \models x: \Box A$
 - ▶ If $x: \Box A$ occurs in Δ , then $\mathcal{M}^{\times}, \rho^{\times} \not\models x: \Box A$