Proof Theory of Modal Logic Lecture 4 Semantic Completeness Marianna Girlando ILLC, Universtiy of Amsterdam 5th Tsinghua Logic Summer School Beijing, 14 - 18 July 2025 ### Recap | | | fml.
interpr. | invertible
rules | analyti-
city | termination proof search | counterm.
constr. | modu-
larity | |-------|---------------------|------------------|---------------------|------------------|--------------------------|----------------------|-----------------| | | G3cp | yes | yes | yes | yes, easy! | yes, easy! | n/a | | - | G3K | yes | no | yes | yes, easy! | yes, not easy | no | | nerke | NK ∪ X [◊] | yes | yes | yes | ? | ? | 45-clause | | 02 | labK∪X | no | yes | yes | ? | ? | yes | Today's lecture: Semantic Completeness - Semantic completeness for NK - Semantic completeness for labK4 #### In the literature For nested sequents: [Bruünler, 2009]: semantic completeness via terminating proof search for all the logics in the S5-cube #### For labelled calculi: - [Negri, 2005]: Minimality argument ensuring for some logics in the S5-cube (K, T, S4, S5); - Negri, 2014]: Semantic completeness via terminating proof search for intermediate logics; - ▶ [Garg, Genovese and Negri, 2012]: Decision procedures via termination for multi-modal logics (without symmetry). ## Semantic completeness for NK NK: recap $$A_1, \ldots, A_m, [\Delta_1], \ldots, [\Delta_n]$$ NK: recap $$A_{1}, \dots, A_{m}, [\Delta_{1}], \dots, [\Delta_{n}]$$ $$\operatorname{init} \frac{}{\Gamma\{\rho, \overline{\rho}\}} \wedge \frac{\Gamma\{A\} - \Gamma\{B\}}{\Gamma\{A \wedge B\}} \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}}$$ $$= \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} \wedge \frac{\Gamma\{\diamondsuit A, [A, \Delta]\}}{\Gamma\{\diamondsuit A, [\Delta]\}}$$ NK: recap $$A_{1}, \dots, A_{m}, [\Delta_{1}], \dots, [\Delta_{n}]$$ $$init \frac{}{\Gamma\{\rho, \overline{\rho}\}} \wedge \frac{\Gamma\{A\} - \Gamma\{B\}}{\Gamma\{A \wedge B\}} \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}}$$ $$= \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} \wedge \frac{\Gamma\{\diamondsuit A, [A, \Delta]\}}{\Gamma\{\diamondsuit A, [\Delta]\}}$$ For a nested sequent Γ and a model $\mathcal{M} = \langle W, R, v \rangle$, an \mathcal{M} -map for Γ is a map $f : tr(\Gamma) \to W$ such that whenever δ is a child of γ in $tr(\Gamma)$, then $f(\gamma)Rf(\delta)$. A nested sequent Γ is satisfied by an \mathcal{M} -map for Γ iff $$\underline{\mathcal{M}}, f(\underline{\delta}) \models B$$, for some $\underline{\delta} \in tr(\Gamma)$, for some $B \in \delta$ A nested sequent Γ is refuted by an \mathcal{M} -map for Γ iff $$\mathcal{M}, f(\delta) \not\models B$$, for all $\delta \in tr(\Gamma)$, for all $B \in \delta$ A nested sequent is valid iff it is satisfied by all \mathcal{M} -maps for Γ , for all models \mathcal{M} . ### Roadmap ### Semantic completeness Lemma (Proof or Countermodel). For Γ nested sequent, either Γ is derivable in NK or there is an \mathcal{M} -map for Γ such that Γ is refuted by the \mathcal{M} -map. Mext slide. Theorem (Semantic Completeness). If $\Gamma \models A$, then the nested sequent $\overline{\Gamma} \lor A$ is derivable in NK. Proof. If $$\Gamma \vee A$$ is not derivable in NK, then $\Gamma \not\models A$. Suppose $\Gamma \vee A$ is not derivable. By Por C German, there is model H^{\times} and H^{\times} -map f^{\times} s.t. $H, w \models \Gamma$ and $H, w \not\models R$ $H^{\times}, f^{\times}(S) \not\models G$ for all $G \in \Gamma$ $H^{\times}, f^{\times}(S) \not\models G$ for all $G \in \Gamma$ #### Proof or countermodel Lemma (Proof or Countermodel). For Γ nested sequent, either Γ is derivable in NK or there is an \mathcal{M} -map for Γ such that Γ is refuted by the \mathcal{M} -map. #### Proof or countermodel Lemma (Proof or Countermodel). For Γ nested sequent, either Γ is derivable in NK or there is an \mathcal{M} -map for Γ such that Γ is refuted by the \mathcal{M} -map. ### Proof or countermodel FINITE Lemma (Proof or Countermodel). For Γ nested sequent, either Γ is derivable in NK or there is an \mathcal{M} -map for Γ such that Γ is refuted by the \mathcal{M} -map. Proof (sketch). Algorithm implementing froof search in MK ALGORITHM finite ### Proof or countermodel FINITE Lemma (Proof or Countermodel). For Γ nested sequent, either Γ is derivable in NK or there is an \mathcal{M} -map for Γ such that Γ is refuted by the \mathcal{M} -map. Proof (sketch). Algorithm implementing froof search in wh ALGORITHM * decision procedure for K! ### **Termination** init $$\frac{\Gamma\{A\}}{\Gamma\{\rho,\overline{\rho}\}}$$ $\wedge \frac{\Gamma\{A\}}{\Gamma\{A \wedge B\}}$ $\vee \frac{\Gamma\{A,B\}}{\Gamma\{A \vee \frac{\Gamma\{A,B\}}{\Gamma\{A,B\}}$ \vee #### A cumulative version of NK Rules of NK^c $$\inf \frac{}{\Gamma\{\rho,\overline{\rho}\}} \qquad \wedge \frac{\Gamma\{A \wedge B,A\} \quad \Gamma[A \wedge B,B\}}{\Gamma\{A \wedge B\}} \qquad \vee \frac{\Gamma[A \vee B,A,B\}}{\Gamma\{A \vee B\}}$$ $$\square \frac{\Gamma[\square A, [A]\}}{\Gamma\{\square A\}} \qquad \Diamond \frac{\Gamma\{\Diamond A, [A,\Delta]\}}{\Gamma\{\Diamond A, [\Delta]\}}$$ #### A cumulative version of NK Rules of NK^c $$\begin{split} & \operatorname{init} \frac{}{\Gamma\{\rho, \overline{\rho}\}} & & \wedge \frac{\Gamma\{A \wedge B, A\} - \Gamma\{A \wedge B, B\}}{\Gamma\{A \wedge B\}} - \vee \frac{\Gamma\{A \vee B, A, B\}}{\Gamma\{A \vee B\}} \\ & & - \frac{\Gamma\{\Box A, [A]\}}{\Gamma\{\Box A\}} - \Diamond \frac{\Gamma\{\Diamond A, [A, \Delta]\}}{\Gamma\{\Diamond A, [\Delta]\}} \end{split}$$ Proposition. NK and NK^c are equivalent. #### A cumulative version of NK Rules of NK^c Proposition. NK and NK^c are equivalent. The set-nested sequent of a nested sequent $A_1, \ldots, A_n, [\Delta_1], \ldots, [\Delta_m]$ is the underlying set $A_1, \ldots, A_n, [\Lambda_1], \ldots, [\Lambda_m]$, where $\Lambda_1, \ldots, \Lambda_m$ are the set-nested sequents of $\Delta_1, \ldots, \Delta_m$. #### A cumulative version of NK Rules of NK^c Proposition. NK and NK^c are equivalent. The set-nested sequent of a nested sequent $A_1, \ldots, A_n, [\Delta_1], \ldots, [\Delta_m]$ is the underlying set $A_1, \ldots, A_n, [\Lambda_1], \ldots, [\Lambda_m]$, where $\Lambda_1, \ldots, \Lambda_m$ are the set-nested sequents of $\Delta_1, \ldots, \Delta_m$. A rule application is redundant if the set-nested sequent of one of its premisses is the same as the set-nested sequent of its conclusion. Avoid redundant applications of the rules! $$\Gamma = \frac{\langle (h \vee \pi), [h \vee \pi, h \vee \pi, h, \pi, q]}{\langle (h \vee \pi), [h \vee \pi, h, \pi, q]}$$ $$\frac{\langle (h \vee \pi), [h \vee \pi, h, \pi, q]}{\langle (h \vee \pi), [h \vee \pi, q]}$$ $$\frac{\langle (h \vee \pi), [q]}{\langle (h \vee \pi), [q]}$$ Aset - NS of Γ = Set - NS of Δ $$\Gamma = \frac{\Box h, [h], [h]}{\Box h}$$ $$\frac{\Box h, [h]}{\Box h}$$ $$\frac{\Box h, [h]}{\Box h}$$ A terminating proof search algorithm for NK^c #### Is Γ derivable in NK^c? - 0. Place $\Gamma_0 = \Gamma$ at the root of \mathcal{T} . - 1. For every topmost nested sequent Γ_i of \mathcal{T} , apply as much as possible non-redundant instances of the rules: $\land, \lor, \diamondsuit$. - 2. If every topmost nested sequent of \mathcal{T} is initial, terminate. $\rightsquigarrow \Gamma_0$ is derivable in NK°. - 3. Otherwise, pick a non-initial topmost nested sequent Γ_k of \mathcal{T} . - a) If there is a non-redundant □-rule instances that can be applied, apply one such instance. Go to Step 1. - b) Otherwise terminate. $\rightsquigarrow \Gamma_0$ is not derivable in NK^c. A terminating proof search algorithm for NK^c ### Is Γ derivable in NK^c? - 0. Place $\Gamma_0 = \Gamma$ at the root of \mathcal{T} . - 1. For every topmost nested sequent Γ_i of \mathcal{T} , apply as much as possible non-redundant instances of the rules: \land , \lor , \diamondsuit . - 2.) If every topmost nested sequent of $\mathcal T$ is initial, terminate. - \rightsquigarrow Γ_0 is derivable in NK^c. - (3.) Otherwise, pick a non-initial topmost nested sequent Γ_k of \mathcal{T} . - a) If there is a non-redundant □-rule instances that can be applied, apply one such instance. Go to Step 1. - b) Otherwise terminate. $\rightsquigarrow \Gamma_0$ is not derivable in NK°. constructed using the algorithm Theorem (Termination). Root-first proof search in NK^{eV}terminates in a finite number of steps. ### Constructing a countermodel Lemma. If proof search terminates in step 3, then there is an \mathcal{M} -map for Γ_0 such that Γ_0 is refuted by the \mathcal{M} -map. *Proof.* Consider Γ_k , the non-initial topmost nested sequent where the algorithm stopped. We define the model $\mathcal{M}^{\times} = \langle W^{\times}, R^{\times}, v^{\times} \rangle$ as follows: - ▶ $\delta R^{\times} \gamma$ iff γ is a child of δ in $tr(\Gamma_k)$ Moreover, let $\underline{f^{\times}}$ be the \mathcal{M}^{\times} -map for Γ_k defined by setting $\underline{f^{\times}(\delta) = \delta}$, for every $\delta \in tr(\overline{\Gamma_k})$. ### Constructing a countermodel Lemma. If proof search terminates in step 3, then there is an \mathcal{M} -map for Γ_0 such that Γ_0 is refuted by the \mathcal{M} -map. *Proof.* Consider Γ_k , the non-initial topmost nested sequent where the algorithm stopped. We define the model $\mathcal{M}^{\times} = \langle W^{\times}, R^{\times}, v^{\times} \rangle$ as follows: - ▶ $\delta R^{\times} \gamma$ iff γ is a child of δ in $tr(\Gamma_k)$ Moreover, let f^{\times} be the \mathcal{M}^{\times} -map for Γ_k defined by setting $f^{\times}(\delta) = \delta$, for every $\delta \in tr(\Gamma_k)$. We have to prove that \mathcal{M}^{\times} is a Kripke model (easy) and that f^{\times} is an \mathcal{M}^{\times} -map (also easy). ### Constructing a countermodel Lemma. If proof search terminates in step 3, then there is an \mathcal{M} -map for Γ_0 such that Γ_0 is refuted by the \mathcal{M} -map. *Proof.* Consider Γ_k , the non-initial topmost nested sequent where the algorithm stopped. We define the model $\mathcal{M}^{\times} = \langle W^{\times}, R^{\times}, v^{\times} \rangle$ as follows: - ▶ $\delta R^{\times} \gamma$ iff γ is a child of δ in $tr(\Gamma_k)$ - $\triangleright (\bar{v}^{\times}(\delta)) = \{p \mid \bar{p} \in \delta\}$ Moreover, let f^{\times} be the \mathcal{M}^{\times} -map for Γ_k defined by setting $f^{\times}(\delta) = \delta$, for every $\delta \in tr(\Gamma_k)$. We have to prove that \mathcal{M}^{\times} is a Kripke model (easy) and that f^{\times} is an \mathcal{M}^{\times} -map (also easy). Next, we need to prove that, for all formulas A: if $$A \in \delta \in tr(\Gamma_k)$$ then $\mathcal{M}^{\times}, f^{\times}(\delta) \not\models A$ Example NK° ### Semantic completeness for labK4 Rules of labK4, a proof system for K4 $$\begin{array}{c} \operatorname{init} \overline{\mathcal{R}, x : p, \Gamma \Rightarrow \Delta, x : p} \\ \\ \frac{\mathcal{R}, x : A, x : B, \Gamma \Rightarrow \Delta}{\mathcal{R}, x : A \land B, \Gamma \Rightarrow \Delta} \\ \\ \vee_{\mathsf{L}} \frac{\mathcal{R}, x : A, \wedge B, \Gamma \Rightarrow \Delta}{\mathcal{R}, x : A \land B, \Gamma \Rightarrow \Delta} \\ \\ \vee_{\mathsf{L}} \frac{\mathcal{R}, x : A, \Gamma \Rightarrow \Delta}{\mathcal{R}, x : A \land B, \Gamma \Rightarrow \Delta} \\ \\ \rightarrow_{\mathsf{L}} \frac{\mathcal{R}, x : A, \Gamma \Rightarrow \Delta}{\mathcal{R}, x : A \lor B, \Gamma \Rightarrow \Delta} \\ \\ \rightarrow_{\mathsf{L}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \quad \mathcal{R}, x : B, \Gamma \Rightarrow \Delta}{\mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta} \\ \\ \rightarrow_{\mathsf{L}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \quad \mathcal{R}, x : B, \Gamma \Rightarrow \Delta}{\mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta} \\ \\ \rightarrow_{\mathsf{L}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \quad \mathcal{R}, x : B, \Gamma \Rightarrow \Delta}{\mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta} \\ \\ \rightarrow_{\mathsf{L}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \quad \mathcal{R}, \Lambda : B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B} \\ \\ \rightarrow_{\mathsf{R}} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B}$$ y fresh means $y \neq x$ and y does not occur in $\mathcal{R} \cup \Gamma \cup \Delta$ Sources of non-termination ``` \vdots \frac{1:2, 1:\Box q, 2:q, 2:q, 2:q \Rightarrow}{1:2, 1:\Box q, 2:q, 2:q \Rightarrow} \frac{1:2, 1:\Box q, 2:q \Rightarrow}{1:2, 1:\Box q, 2:q \Rightarrow} \frac{1:2, 1:\Box q \Rightarrow}{1:2, 1:\Box q \Rightarrow} ``` labK4^c, a cumulative version of labK4 $$\begin{array}{c} \inf \frac{1}{\mathcal{R}, x : p, \Gamma \Rightarrow \Delta, x : p} \\ & \stackrel{\perp}{\mathcal{R}, x : A \land B, x : A, x : B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\wedge}{\mathcal{R}, x : A \land B, x : A, x : B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\wedge}{\mathcal{R}, x : A \land B, x : A \land B, x : A \land B, x : A \land B} \\ & \stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B, x : A \land B} \\ & \stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \lor B, x : A \lor B} \\ & \stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \lor B} \\ & \stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \lor B} \\ & \stackrel{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \lor B} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A \lor B, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A, \pi : A \lor B, \pi : A \lor B, \Gamma \Rightarrow \Delta} \\ & \stackrel{\mathcal{R}, \pi : A, \pi, \pi : A, A,$$ y fresh means $y \neq x$ and y does not occur in $\mathcal{R} \cup \Gamma \cup \Delta$ Redundant rule applications Intuitively: A rule application R is redundant at a sequent \mathcal{S} if \mathcal{S} already contains the formulas that would be introduced in one premiss of R. ### Redundant rule applications Intuitively: A rule application R is redundant at a sequent \mathcal{S} if \mathcal{S} already contains the formulas that would be introduced in one premiss of R. Formally: A rule application R to formulas in $S = R, \Gamma \Rightarrow \Delta$ is redundant if condition (R) is satisfied: - (tr) If xRy and yRz occur in \mathcal{R} , then xRz occurs in \mathcal{R} ; - $(Λ_L)$ If $\underline{x:A \land B}$ occurs in Γ, then both x:A and x:B occur in Γ; - (\land _R) If $x:A \land B$ occurs in \triangle , then x:A occurs in \triangle or x:B occur in \triangle ; (...) - (\Box_L) If xRy occurs in R and $x:\Box A$ occurs in Γ , then y:A occurs in Γ ; - (\square_R) If $x:\square A$ occurs in Δ , then there is a y such that xRy occurs in R and y:A occurs in Δ . Avoid redundant applications of the rules! ### Sources of non-termination ``` \begin{array}{c} 33,2R3,0R2,1R2,0R1 \Rightarrow 0: \Diamond \Box p,1:\bot,1:\Box p,2:p,2:\Box p,3:p,3:\Box p \\ \hline 0R3,2R3,0R2,1R2,0R1 \Rightarrow 0: \Diamond \Box p,1:\bot,1:\Box p,2:p,2:\Box p,3:p \\ \hline 2R3,0R2,1R2,0R1 \Rightarrow 0: \Diamond \Box p,1:\bot,1:\Box p,2:p,2:\Box p,3:p \\ \hline \end{array} \overline{0R2}, 1R2, 0R1 \Rightarrow 0: \Diamond \Box p, 1:\bot, 1:\Box p, 2:p, 2:\Box p 0R2, 1R2, 0R1 \Rightarrow \underline{0:\Diamond \Box p}, 1:\bot, 1:\Box p, 2:p 1R2,0R1 \Rightarrow 0: \Diamond \Box p,1:\bot,1:\Box p,2:p 0R1 \Rightarrow 0: \Diamond \Box p, \overline{1:\bot, \underline{1}:\Box p} 0R1 \Rightarrow 0: \Diamond \Box p, \overline{1:\bot} ``` Limit applications of \square_R and \diamondsuit_L $$\frac{X \cap Y, X, 1 \to \Delta, y \cdot A}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : \Box A} \text{ y fresh}$$ Limit applications of \square_R and \diamondsuit_L Formally: A rule application R to formulas in $S = \mathcal{R}, \Gamma \Rightarrow \Delta$ is redundant if condition (R) is satisfied: (\square_R) If $x:\square A$ occurs in Δ , then there is a y such that xRy occurs in $\mathcal R$ and y:A occurs in Δ . Limit applications of \square_R and \diamondsuit_L $$\{G \mid K : G \in \Gamma \} = \{E \mid x : E \in \Gamma \}$$ and $\{D \mid K : D \in \Delta \} = \{F \mid x : F \in \Delta \}$ Formally: A rule application R to formulas in S = R, $\Gamma \Rightarrow \Delta$ is redundant if condition (R) is satisfied: ($$\square_R$$) If $x:\square A$ occurs in Δ , then there is a y such that xRy occurs in R and $\underline{y:A}$ occurs in Δ . - (\square_R) If $x:\square A$ occurs in Δ , then either - a) there is a \underline{k} such that \underline{kRx} occurs in \mathcal{R} and $\underline{k \sim x}$ otherwise $\overline{\mathcal{B}}$ there is a \underline{y} such that \overline{xRy} occurs in \mathcal{R} and $\overline{y:A}$ occurs in Δ . If a) holds, we say that x is a copy of k at S A terminating proof search algorithm for labK4 Is $x:\Gamma \Rightarrow x:A$ derivable in labK4? - 0. Place $S_0 = x:\Gamma \Rightarrow x:A$ at the root of \mathcal{T} . - 1. For every topmost labelled sequent S_i of T, apply as much as possible non-redundant instances of the rules: $$tr, \land_L, \land_R, \lor_L, \lor_R, \rightarrow_L, \rightarrow_R, \Box_L, \diamondsuit_R.$$ - If every topmost labelled sequent of T is initial, terminate. x: Γ ⇒ x: A is derivable in labK4. - 3. Otherwise, pick a non-initial topmost labelled sequent S_k of \mathcal{T} . - a) If there are non-redundant □_R- or ⋄_L- rule instances that can be applied, apply one such instance. Go to Step 1. - b) Otherwise terminate. $\rightsquigarrow x:\Gamma \Rightarrow x:A$ is not derivable in labK4. A terminating proof search algorithm for labK4 Is $x:\Gamma \Rightarrow x:A$ derivable in labK4? - 0. Place $S_0 = x:\Gamma \Rightarrow x:A$ at the root of \mathcal{T} . - 1. For every topmost labelled sequent S_i of T, apply as much as possible non-redundant instances of the rules: $$tr, \wedge_L, \wedge_R, \vee_L, \vee_R, \rightarrow_L, \rightarrow_R, \square_L, \diamondsuit_R.$$ - 2. If every topmost labelled sequent of $\ensuremath{\mathcal{T}}$ is initial, terminate. - $\rightsquigarrow x:\Gamma \Rightarrow x:A$ is derivable in labK4. - 3. Otherwise, pick a non-initial topmost labelled sequent S_k of T. - a) If there are non-redundant □_R- or ⋄_L- rule instances that can be applied, apply one such instance. Go to Step 1. - b) Otherwise terminate. $\rightsquigarrow x:\Gamma \Rightarrow x:A$ is not derivable in labK4. Theorem (Termination). Root-first proof search in labK4^c terminates in a finite number of steps. #### Validity of sequents Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$, and $\rho : \mathsf{Lb}(S) \to W$ (interpretation). #### Validity of sequents Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$, and $\rho : \mathsf{Lb}(S) \to W$ (interpretation). Satisfiability of labelled formulas at ${\mathcal M}$ under ρ : $$\mathcal{M}, \rho \Vdash xRy \quad \text{iff} \quad \rho(x)R\rho(y)$$ $\mathcal{M}, \rho \Vdash x:A \quad \text{iff} \quad \mathcal{M}, \rho(x) \Vdash A$ #### Validity of sequents Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$, and $\rho : \mathsf{Lb}(S) \to W$ (interpretation). Satisfiability of labelled formulas at ${\mathcal M}$ under ρ : $$\mathcal{M}, \rho \Vdash xRy \quad \text{iff} \quad \rho(x)R\rho(y)$$ $\mathcal{M}, \rho \Vdash x:A \quad \text{iff} \quad \mathcal{M}, \rho(x) \Vdash A$ Satisfiability of sequents at M under ρ (φ is xRy or x:A): $$\mathcal{M}, \rho \Vdash \mathcal{R}, \Gamma \Rightarrow \Delta$$ iff if for all $\varphi \in \mathcal{R} \cup \Gamma$ it holds that $\mathcal{M}, \rho \Vdash \varphi$, then for some $x:D \in \Delta$ it holds that $\mathcal{M}, \rho \Vdash x:D$. #### Validity of sequents Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$, and $\rho : \mathsf{Lb}(S) \to W$ (interpretation). Satisfiability of labelled formulas at $\mathcal M$ under ρ : $$\mathcal{M}, \rho \Vdash xRy \quad \text{iff} \quad \rho(x)R\rho(y)$$ $\mathcal{M}, \rho \Vdash x:A \quad \text{iff} \quad \mathcal{M}, \rho(x) \Vdash A$ Satisfiability of sequents at \mathcal{M} under ρ (φ is xRy or x:A): $$\mathcal{M}, \rho \Vdash \mathcal{R}, \Gamma \Rightarrow \Delta$$ iff if for all $\varphi \in \mathcal{R} \cup \Gamma$ it holds that $\mathcal{M}, \rho \Vdash \varphi$, then for some $x:D \in \Delta$ it holds that $\mathcal{M}, \rho \Vdash x:D$. A sequent $\mathcal{R}, \Gamma \Rightarrow \Delta$ has a countermodel iff there are \mathcal{M}, ρ such that: - $\triangleright \mathcal{M}, \rho \models \varphi$, for all $\varphi \in \mathcal{R} \cup \Gamma$, and - ▶ $\mathcal{M}, \rho \not\models x:D$, for all $x:D \in \Delta$. #### Validity of sequents Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(\mathcal{S}) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}, \text{ and } \rho : \mathsf{Lb}(\mathcal{S}) \to W \text{ (interpretation)}.$ Satisfiability of labelled formulas at \mathcal{M} under ρ : $$\mathcal{M}, \rho \Vdash xRy \quad \text{iff} \quad \rho(x)R\rho(y)$$ $\mathcal{M}, \rho \Vdash x:A \quad \text{iff} \quad \mathcal{M}, \rho(x) \Vdash A$ Satisfiability of sequents at \mathcal{M} under ρ (φ is xRy or x:A): $$\mathcal{M}, \rho \Vdash \mathcal{R}, \Gamma \Rightarrow \Delta$$ iff if for all $\varphi \in \mathcal{R} \cup \Gamma$ it holds that $\mathcal{M}, \rho \Vdash \varphi$, then for some $x:D \in \Delta$ it holds that $\mathcal{M}, \rho \Vdash x:D$. A sequent $\mathcal{R}, \Gamma \Rightarrow \Delta$ has a countermodel iff there are \mathcal{M}, ρ such that: h - ▶ $\mathcal{M}, \rho \models \varphi$, for all $\varphi \in \mathcal{R} \cup \Gamma$, and ▶ $\mathcal{M}, \rho \not\models x:D$, for all $x:D \in \Delta$. Validity of sequents in a class of frames X: $$\models_{\mathcal{X}} \mathcal{R}, \Gamma \Rightarrow \Delta$$ iff for any ρ and any $\mathcal{M} \in \mathcal{X}, \ \mathcal{M}, \rho \Vdash \mathcal{R}, \Gamma \Rightarrow \Delta$ #### Constructing a countermodel Lemma. If proof search terminates in step 3, then S_0 has a countermodel. *Proof.* Consider S_k , the non-initial topmost nested sequent where the algorithm stopped. We define the model $\mathcal{M}^{\times} = \langle W^{\times}, R^{\times}, v^{\times} \rangle$ as follows: - $V W^{\times} = \{x \mid x \text{ occurs in } S\};$ - ▶ To define R[×], first define: - $xR_1^{\times}y$ iff xRy occurs in \mathcal{R} ; - $xR_2^{\times}k$ iff x is a □-copy (or \diamondsuit -copy) of k. \mathcal{R}^{\times} is the transitive closure of $R_1^{\times} \cup R_2^{\times}$. v[×](x) = {p | x:p occurs in Γ}. #### Constructing a countermodel Lemma. If proof search terminates in step 3, then S_0 has a countermodel. *Proof.* Consider S_k , the non-initial topmost nested sequent where the algorithm stopped. We define the model $\mathcal{M}^{\times} = \langle W^{\times}, R^{\times}, v^{\times} \rangle$ as follows: - \triangleright $W^{\times} = \{x \mid x \text{ occurs in } S\};$ - ▶ To define R[×], first define: - $xR_1^{\times}y$ iff xRy occurs in \mathcal{R} ; - $xR_2^{\times}k$ iff x is a □-copy (or \diamondsuit -copy) of k. \mathcal{R}^{\times} is the transitive closure of $R_1^{\times} \cup R_2^{\times}$. $v^{\times}(x) = \{p \mid x:p \text{ occurs in } \Gamma\}.$ It is easy to verify that \mathcal{M}^{\times} satisfies the frame condition of transitivity. ### Constructing a countermodel Lemma. If proof search terminates in step 3, then S_0 has a countermodel. *Proof.* Consider S_k , the non-initial topmost nested sequent where the algorithm stopped. We define the model $\mathcal{M}^{\times} = \langle W^{\times}, R^{\times}, v^{\times} \rangle$ as follows: - $V W^{\times} = \{x \mid x \text{ occurs in } S\};$ - ▶ To define R[×], first define: - $xR_1^{\times}y$ iff xRy occurs in \mathcal{R} ; - $xR_2^{\times}k$ iff x is a □-copy (or \diamondsuit -copy) of k. \mathcal{R}^{\times} is the transitive closure of $R_1^{\times} \cup R_2^{\times}$. It is easy to verify that \mathcal{M}^{\times} satisfies the frame condition of transitivity. Take $\rho^{\times}(x) = x$, for each label x occurring in S. Then: - ▶ If x:A occurs in Γ , then $\mathcal{M}^{\times}, \rho^{\times} \models x:A$ - ▶ If x:A occurs in Δ , then $\mathcal{M}^{\times}, \rho^{\times} \not\models x:A$ #### Example #### Example #### Example #### Summing up End of content for today's lecture! Questions? #### **Exercises** - Check whether ◊□(p ∨ □(p → ⊥)) is valid in K4 using the terminating algorithm for labK4. If the formula is not valid, produce a countermodel. - 2. Let \mathcal{M}^{\times} be the countermodel for a labelled sequent \mathcal{S} . Verify that \mathcal{M}^{\times} satisfies the frame condition of transitivity. Then, for $\rho^{\times}(x) = x$, for each label x occurring in \mathcal{S} , verify that the Truth Lemma holds, for the cases: - ▶ If $x: \Box A$ occurs in Γ, then $\mathcal{M}^{\times}, \rho^{\times} \models x: \Box A$ - ▶ If $x: \Box A$ occurs in Δ , then $\mathcal{M}^{\times}, \rho^{\times} \not\models x: \Box A$