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Recap

fml. invertible analyti- termination counterm. modu-
interpr. rules city proof search constr. larity

G3cp yes yes yes yes, easy! yes, easy! n/a

G3K yes no yes yes, easy! yes, not easy no

NK ∪ X^ yes yes yes ? ? 45-clause

labK ∪ X no yes yes ? ? yes



Today’s lecture: Semantic Completeness

▷ Semantic completeness for NK

▷ Semantic completeness for labK4



In the literature

For nested sequents: [Bruünler, 2009]: semantic completeness via
terminating proof search for all the logics in the S5-cube

For labelled calculi:

▷ [Negri, 2005]: Minimality argument ensuring for some logics in the
S5-cube (K, T, S4, S5);

▷ [Negri, 2014]: Semantic completeness via terminating proof search
for intermediate logics;

▷ [Garg, Genovese and Negri, 2012]: Decision procedures via termination
for multi-modal logics (without symmetry).



Semantic completeness for NK



NK: recap

A1, . . . ,Am, [∆1], . . . , [∆n]

init
Γ{p, p}

Γ{A } Γ{B}
∧

Γ{A ∧ B}

Γ{A ,B}
∨

Γ{A ∨ B}

Γ{[A ]}
□
Γ{□A }

Γ{^A , [A ,∆]}
^

Γ{^A , [∆]}

For a nested sequent Γ and a modelM = ⟨W ,R , v⟩, anM-map for Γ is a
map f : tr(Γ)→ W such that whenever δ is a child of γ in tr(Γ), then
f(γ)Rf(δ).

A nested sequent Γ is satisfied by anM-map for Γ iff

M, f(δ) |= B , for some δ ∈ tr(Γ), for some B ∈ δ

A nested sequent Γ is refuted by anM-map for Γ iff

M, f(δ) ̸|= B , for all δ ∈ tr(Γ), for all B ∈ δ

A nested sequent is valid iff it is satisfied by allM-maps for Γ, for all
modelsM.
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Roadmap



Semantic completeness

Lemma (Proof or Countermodel). For Γ nested sequent, either Γ is derivable
in NK or there is anM-map for Γ such that Γ is refuted by theM-map.

Theorem (Semantic Completeness). If Γ |= A , then the nested sequent
Γ̄ ∨ A is derivable in NK.
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Termination

init
Γ{p, p}

Γ{A } Γ{B}
∧

Γ{A ∧ B}

Γ{A ,B}
∨

Γ{A ∨ B}

Γ{[A ]}
□
Γ{□A }

Γ{^A , [A ,∆]}
^

Γ{^A , [∆]}



A cumulative version of NK

Rules of NKc

init
Γ{p, p}

Γ{A ∧ B ,A } Γ{A ∧ B ,B}
∧

Γ{A ∧ B}

Γ{A ∨ B ,A ,B}
∨

Γ{A ∨ B}

Γ{□A , [A ]}
□

Γ{□A }

Γ{^A , [A ,∆]}
^

Γ{^A , [∆]}

Proposition. NK and NKc are equivalent.

The set-nested sequent of a nested sequent A1, . . . ,An, [∆1], . . . , [∆m] is
the underlying set A1, . . . ,An, [Λ1], . . . , [Λm], where Λ1, . . . ,Λm are the
set-nested sequents of ∆1, . . . ,∆m.

A rule application is redundant if the set-nested sequent of one of its
premisses is the same as the set-nested sequent of its conclusion.
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Avoid redundant applications of the rules!



A terminating proof search algorithm for NKc

Is Γ derivable in NKc?

0. Place Γ0 = Γ at the root of T .

1. For every topmost nested sequent Γi of T , apply as much as
possible non-redundant instances of the rules: ∧,∨,^.

2. If every topmost nested sequent of T is initial, terminate.
⇝ Γ0 is derivable in NKc.

3. Otherwise, pick a non-initial topmost nested sequent Γk of T .
a) If there is a non-redundant □-rule instances that can be applied, apply

one such instance. Go to Step 1.
b) Otherwise terminate.⇝ Γ0 is not derivable in NKc.

Theorem (Termination). Root-first proof search in NKc terminates in a finite
number of steps.
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Constructing a countermodel

Lemma. If proof search terminates in step 3, then there is anM-map for Γ0

such that Γ0 is refuted by theM-map.

Proof. Consider Γk , the non-initial topmost nested sequent where the
algorithm stopped. We define the modelM× = ⟨W×,R×, v×⟩ as follows:

▷ W× = {δ | δ ∈ tr(Γk )}

▷ δR×γ iff γ is a child of δ in tr(Γk )

▷ v×(δ) = {p | p̄ ∈ δ}

Moreover, let f× be theM×-map for Γk defined by setting f×(δ) = δ, for
every δ ∈ tr(Γk ).

We have to prove thatM× is a Kripke model (easy) and that f× is an
M×-map (also easy).

Next, we need to prove that, for all formulas A :

if A ∈ δ ∈ tr(Γk ) thenM×, f×(δ) ̸|= A
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Example

init
^(p̄ ∧ q̄), [p̄, p],□q

^(p̄ ∧ q̄), [q̄, p], [p̄, q]
init
^(p̄ ∧ q̄), [q̄, p], [q̄, q]

∧

^(p̄ ∧ q̄), [q̄, p], [p̄ ∧ q̄, q]
^

^(p̄ ∧ q̄), [q̄, p], [q]
□
^(p̄ ∧ q̄), [q̄, p],□q

∧

^(p̄ ∧ q̄), [p̄ ∧ q̄, p],□q
^

^(p̄ ∧ q̄), [p],□q
□
^(p̄ ∧ q̄),□p,□q

∨

^(p̄ ∧ q̄),□p ∨ □q
∨

^(p̄ ∧ q̄) ∨ (□p ∨ □q)



Semantic completeness for labK4



Rules of labK4, a proof system for K4

init
R, x:p, Γ⇒ ∆, x:p

⊥L
R, x:⊥, Γ⇒ ∆

R, x:A , x:B , Γ⇒ ∆
∧L
R, x:A ∧ B , Γ⇒ ∆

R, Γ⇒ ∆, x:A R, Γ⇒ ∆, x:B
rlr∧

R, Γ⇒ ∆, x:A ∧ B

R, x:A , Γ⇒ ∆ R, x:B , Γ⇒ ∆
∨L

R, x:A ∨ B , Γ⇒ ∆

R, Γ⇒ ∆, x:A , x:B
∨R
R, Γ⇒ ∆, x:A ∨ B

R, Γ⇒ ∆, x:A R, x:B , Γ⇒ ∆
→L

R, x:A → B , Γ⇒ ∆

x:A ,R, Γ⇒ ∆, x:B
→R
R, Γ⇒ ∆, x:A → B

xRy,R, y:A , x:□A , Γ⇒ ∆
□L

xRy,R, x:□A , Γ⇒ ∆

xRy,R, Γ⇒ ∆, y:A
□R y fresh
R, Γ⇒ ∆, x:□A

xRy,R, y:A , Γ⇒ ∆
^L y fresh
R, x:^A , Γ⇒ ∆

xRy,R, Γ⇒ ∆, x:^A , y:A
^R

xRy,R, Γ⇒ ∆, x:^A

xRz, xRy, yRz,R, Γ⇒ ∆
tr

xRy, yRz,R, Γ⇒ ∆

y fresh means y , x and y does not occur in R ∪ Γ ∪∆



Sources of non-termination

...
□L

1:2, 1:□q, 2:q, 2:q, 2:q ⇒
□L

1:2, 1:□q, 2:q, 2:q ⇒
□L

1:2, 1:□q, 2:q ⇒
□L

1:2, 1:□q ⇒



labK4c, a cumulative version of labK4

init
R, x:p, Γ⇒ ∆, x:p

⊥L
R, x:⊥, Γ⇒ ∆

R, x:A ∧ B , x:A , x:B , Γ⇒ ∆
∧L

R, x:A ∧ B , Γ⇒ ∆

R, Γ⇒ ∆, x:A ∧ B , x:A R, Γ⇒ ∆, x:A ∧ B , x:B
∧R

R, Γ⇒ ∆, x:A ∧ B

R, Γ⇒ ∆, x:A ∨ B , x:A , x:B
∨R

R, Γ⇒ ∆, x:A ∨ B

R, x:A , x:A ∨ B , Γ⇒ ∆ R, x:B , x:A ∨ B , Γ⇒ ∆
∨L

R, x:A ∨ B , Γ⇒ ∆

x:A ,R, Γ⇒ ∆, x:A → B , x:B
→R

R, Γ⇒ ∆, x:A → B

R, x:A → B , Γ⇒ ∆, x:A R, x:B , x:A → B , Γ⇒ ∆
→L

R, x:A → B , Γ⇒ ∆

xRy,R, y:A , x:□A , Γ⇒ ∆
□L

xRy,R, x:□A , Γ⇒ ∆

xRy,R, Γ⇒ ∆, x:□A , y:A
□R y fresh

R, Γ⇒ ∆, x:□A

xRy,R, y:A , x:^A , Γ⇒ ∆
^L y fresh

R, x:^A , Γ⇒ ∆

xRy,R, Γ⇒ ∆, x:^A , y:A
^R

xRy,R, Γ⇒ ∆, x:^A

xRz, xRy, yRz,R, Γ⇒ ∆
tr

xRy, yRz,R, Γ⇒ ∆

y fresh means y , x and y does not occur in R ∪ Γ ∪∆



Redundant rule applications

Intuitively: A rule application R is redundant at a sequent S if S already
contains the formulas that would be introduced in one premiss of R.

Formally: A rule application R to formulas in S = R, Γ⇒ ∆ is redundant
if condition (R) is satisfied:

(tr) If xRy and yRz occur in R, then xRz occurs in R;

(∧L) If x:A ∧ B occurs in Γ, then both x:A and x:B occur in Γ;

(∧R) If x:A ∧ B occurs in ∆, then x:A occurs in ∆ or x:B occur in ∆;

(..)

(□L) If xRy occurs in R and x:□A occurs in Γ, then y:A occurs in Γ;

(□R) If x:□A occurs in ∆, then there is a y such that xRy occurs in R and
y:A occurs in ∆.
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Avoid redundant applications of the rules!



Sources of non-termination

□R
0R3, 2R3, 0R2, 1R2, 0R1⇒ 0:^□p, 1:⊥, 1:□p, 2:p, 2:□p, 3:p, 3:□p

^R
0R3, 2R3, 0R2, 1R2, 0R1⇒ 0:^□p, 1:⊥, 1:□p, 2:p, 2:□p, 3:p

tr
2R3, 0R2, 1R2, 0R1⇒ 0:^□p, 1:⊥, 1:□p, 2:p, 2:□p, 3:p

□R
0R2, 1R2, 0R1⇒ 0:^□p, 1:⊥, 1:□p, 2:p, 2:□p

^R
0R2, 1R2, 0R1⇒ 0:^□p, 1:⊥, 1:□p, 2:p

tr
1R2, 0R1⇒ 0:^□p, 1:⊥, 1:□p, 2:p

□R
0R1⇒ 0:^□p, 1:⊥, 1:□p

^R
0R1⇒ 0:^□p, 1:⊥

□R
⇒ 0:^□p, 0:□⊥

∨R
⇒ 0:^□p ∨ □⊥



Limit applications of □R and ^L

xRy,R, Γ⇒ ∆, y:A
□R y fresh
R, Γ⇒ ∆, x:□A

xRy,R, y:A , x:^A , Γ⇒ ∆
^L y fresh

R, x:^A , Γ⇒ ∆

Formally: A rule application R to formulas in S = R, Γ⇒ ∆ is redundant
if condition (R) is satisfied:
(□R) If x:□A occurs in ∆, then there is a y such that xRy occurs in R and y:A

occurs in ∆.

(□R) If x:□A occurs in ∆, then either
a) there is a k such that kRx occurs in R and k ∼ x; otherwise
b) there is a y such that xRy occurs in R and y:A occurs in ∆.

If a) holds, we say that x is a copy of k at S
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A terminating proof search algorithm for labK4

Is x:Γ⇒ x:A derivable in labK4?

0. Place S0 = x:Γ⇒ x:A at the root of T .

1. For every topmost labelled sequent Si of T , apply as much as
possible non-redundant instances of the rules:
tr,∧L,∧R,∨L,∨R,→L,→R,□L,^R.

2. If every topmost labelled sequent of T is initial, terminate.
⇝ x:Γ⇒ x:A is derivable in labK4.

3. Otherwise, pick a non-initial topmost labelled sequent Sk of T .
a) If there are non-redundant □R- or ^L- rule instances that can be

applied, apply one such instance. Go to Step 1.
b) Otherwise terminate.⇝ x:Γ⇒ x:A is not derivable in labK4.

Theorem (Termination). Root-first proof search in labK4c terminates in a
finite number of steps.
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Validity of sequents

Given a sequent S = R, Γ⇒ ∆, and a modelM = ⟨W ,R , v⟩, let
Lb(S) = {x | x ∈ R ∪ Γ ∪∆}, and ρ : Lb(S)→ W (interpretation).

Satisfiability of labelled formulas atM under ρ :

M, ρ ⊩ xRy iff ρ(x)Rρ(y)

M, ρ ⊩ x:A iff M, ρ(x) ⊩ A

Satisfiability of sequents atM under ρ (φ is xRy or x:A ):

M, ρ ⊩ R, Γ⇒ ∆ iff

if for all φ ∈ R ∪ Γ it holds that M, ρ ⊩ φ,

then for some x:D ∈ ∆ it holds that M, ρ ⊩ x:D.

A sequent R, Γ⇒ ∆ has a countermodel iff there areM, ρ such that:
▷ M, ρ |= φ, for all φ ∈ R ∪ Γ, and
▷ M, ρ ̸|= x:D, for all x:D ∈ ∆.

Validity of sequents in a class of frames X :

|=X R, Γ⇒ ∆ iff for any ρ and anyM ∈ X, M, ρ ⊩ R, Γ⇒ ∆
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Constructing a countermodel

Lemma. If proof search terminates in step 3, then S0 has a countermodel.

Proof. Consider Sk , the non-initial topmost nested sequent where the
algorithm stopped. We define the modelM× = ⟨W×,R×, v×⟩ as follows:

▷ W× = {x | x occurs in S};
▷ To define R×, first define:

− xR×1 y iff xRy occurs in R;
− xR×2 k iff x is a □-copy (or ^-copy) of k .

R× is the transitive closure of R×1 ∪ R×2 .

▷ v×(x) = {p | x:p occurs in Γ}.

It is easy to verify thatM× satisfies the frame condition of transitivity.

Take ρ×(x) = x, for each label x occurring in S. Then:

▷ If x:A occurs in Γ, thenM×, ρ× |= x:A

▷ If x:A occurs in ∆, thenM×, ρ× ̸|= x:A
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Example

□R
0R3, 2R3, 0R2, 1R2, 0R1⇒ 0:^□p, 1:⊥, 1:□p, 2:p, 2:□p, 3:p, 3:□p

^R
0R3, 2R3, 0R2, 1R2, 0R1⇒ 0:^□p, 1:⊥, 1:□p, 2:p, 2:□p, 3:p

tr
2R3, 0R2, 1R2, 0R1⇒ 0:^□p, 1:⊥, 1:□p, 2:p, 2:□p, 3:p

□R
0R2, 1R2, 0R1⇒ 0:^□p, 1:⊥, 1:□p, 2:p, 2:□p

^R
0R2, 1R2, 0R1⇒ 0:^□p, 1:⊥, 1:□p, 2:p

tr
1R2, 0R1⇒ 0:^□p, 1:⊥, 1:□p, 2:p

□R
0R1⇒ 0:^□p, 1:⊥, 1:□p

^R
0R1⇒ 0:^□p, 1:⊥

□R
⇒ 0:^□p, 0:□⊥

∨R
⇒ 0:^□p ∨ □⊥

0

⊮ ^□p
⊮ □⊥

1
⊮ □p
⊮ p
⊮ ⊥

2
⊮ □p
⊮ p

3
⊮ □p
⊮ p

R R R

R
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Summing up

fml. invertible analyti- termination counterm. modu-
interpr. rules city proof search constr. larity

G3cp yes yes yes yes, easy! yes, easy! n/a

G3K yes no yes yes, easy! yes, not easy no

NK ∪ X^ yes yes yes yes yes, easy! 45-clause

labK ∪ X no yes yes yes, for most yes, easy! yes



End of content for today’s lecture!

Questions?



Exercises

1. Check whether ^□(p ∨ □(p→⊥)) is valid in K4 using the
terminating algorithm for labK4. If the formula is not valid, produce a
countermodel.

2. LetM× be the countermodel for a labelled sequent S. Verify that
M× satisfies the frame condition of transitivity.
Then, for ρ×(x) = x, for each label x occurring in S, verify that the
Truth Lemma holds, for the cases:
▷ If x:□A occurs in Γ, thenM×, ρ× |= x:□A
▷ If x:□A occurs in ∆, thenM×, ρ× ̸|= x:□A


