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Recap

fml. invertible | analyti- | termination counterm. modu-
interpr. rules city proof search constr. larity
G3cp yes yes yes yes, easy! yes, easy! n/a
G3K yes no yes yes, easy! yes, not easy no
NK U X® yes yes yes ? ? 45-clause
labK U X ‘ no yes yes ? ? yes



Today’s lecture: Semantic Completeness

> Semantic completeness for NK
> Semantic completeness for labK4



In the literature

For nested sequents: : semantic completeness via
terminating proof search for all the logics in the S5-cube

For labelled calculi:

> : Minimality argument ensuring for some logics in the
S5-cube (K, T, S4, S5);
> : Semantic completeness via terminating proof search

for intermediate logics;

> : Decision procedures via termination
for multi-modal logics (without symmetry).



Semantic completeness for NK




NK: recap
At Am (AL [A]



NK: recap

Avver A [Dils s [A]
- (A T(B F(A.B
"rpp | TIAAB FAvVB)
MAD TOA[AA])

o
oA} M{OA, [A]}



NK: recap
Ao An AL A

- FA] T(B) r(A,B)
init
fp.pl | TIAAB]  TIAvVB
rA]) [0A, [A, A])

[m]

foAl  ToA[A]

For a nested sequent I' and a model M = (W, R, v), an M-map for ' is a
map f : tr(I) — W such that whenever § is a child of y in tr(T), then

f(y)Rf(5).
A nested sequent I is satisfied by an M-map for I iff

M, f(6) = B, forsome 6 € tr(I'), for some B € §
A nested sequent I' is refuted by an M-map for I iff
M, f(6) = B, forallsetr(l), forall Be§

A nested sequent is valid iff it is satisfied by all M-maps for I', for all
models M.
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Semantic completeness

Lemma (Proof or Countermodel). For I' nested sequent, either I' is derivable
in NK or there is an M-map for I' such that I' is refuted by the M-map.

Theorem (Semantic Completeness). If I' |= A, then the nested sequent
[V A is derivable in NK.
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Lemma (Proof or Countermodel). For I nested sequent, either I" is derivable
in NK or there is an M-map for I such that I" is refuted by the M-map.
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Lemma (Proof or Countermodel). For I nested sequent, either I" is derivable
in NK or there is an M-map for I such that I" is refuted by the M-map.
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Proof or countermodel
FINVTE

Lemma (Proof or\ﬁountermodel). For I nested sequent, either I" is derivable
in NK or there is an M-map for I such that I" is refuted by the M-map.
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Proof or countermodel
FINVTE

Lemma (Proof or\ﬁountermodel). For I nested sequent, either I" is derivable
in NK or there is an M-map for I such that I" is refuted by the M-map.
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Termination
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A cumulative version of NK

Rules of NK°
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Proposition. NK and NK€ are equivalent.
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Proposition. NK and NK€ are equivalent.

The set-nested sequent of a nested sequent Ay, ..., A, [A1],...,[Apn] is
the underlying set Ay, ..., An, [A1],- .., [Am], where Aq, ..., Ay are the
set-nested sequents of Aq,..., Ap.



A cumulative version of NK

Rules of NK°
[AAB,A] TAAB,B]  [(AVB,A,B
init
oo (A AB) "TTiAvE)
(AJA] T10A,[A.A])
(oA [0A, [A])

Proposition. NK and NK€ are equivalent.

The set-nested sequent of a nested sequent Ay, ..., A, [A1],...,[Apn] is
the underlying set Ay, ..., An, [A1],- .., [Am], where Aq, ..., Ay are the
set-nested sequents of Aq,..., Ap.

A rule application is redundant if the set-nested sequent of one of its
premisses is the same as the set-nested sequent of its conclusion.



Avoid redundant applications of the rules!



A terminating proof search algorithm for NK®

Is I derivable in NK®?

0. Place 'y = I at the root of 7.

1. For every topmost nested sequent I'; of 7, apply as much as
possible non-redundant instances of the rules: A, Vv, ¢.
2. If every topmost nested sequent of 7 is initial, terminate.
~> [ is derivable in NK®.
3. Otherwise, pick a non-initial topmost nested sequent ', of 7.
a) If there is a non-redundant o-rule instances that can be applied, apply

one such instance. Go to Step 1.
b) Otherwise terminate. ~» [ is not derivable in NK°.



A terminating proof search algorithm for NK®

Is I derivable in NK®?

0. Place 'y = I at the root of 7.

1. For every topmost nested sequent I'; of 7, apply as much as
possible non-redundant instances of the rules: A, Vv, ¢.

2. If every topmost nested sequent of 7 is initial, terminate.
~> [ is derivable in NK®.

3. Otherwise, pick a non-initial topmost nested sequent ', of 7.

a) If there is a non-redundant o-rule instances that can be applied, apply
one such instance. Go to Step 1.
b) Otherwise terminate. ~» [ is not derivable in NK°.

Theorem (Termination). Root-first proof search in NK® terminates in a finite
number of steps.



Constructing a countermodel

Lemma. If proof search terminates in step 3, then there is an M-map for 'y
such that Iy is refuted by the M-map.

Proof. Consider Ik, the non-initial topmost nested sequent where the
algorithm stopped. We define the model M* = (WX, R*, v*) as follows:

> WX =1{5]6 ¢ tr(Tk)}

> 6R*y iff v is a child of 6 in tr(Ix)

> v¥(6) ={p|p€d}
Moreover, let f* be the M*-map for ', defined by setting f*(5) = ¢, for
every 6 € tr(lg).
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such that Iy is refuted by the M-map.

Proof. Consider Ik, the non-initial topmost nested sequent where the
algorithm stopped. We define the model M* = (WX, R*, v*) as follows:
> WX ={5]6¢tr(lg)}
> 6R*y iff v is a child of 6 in tr(Ix)
> v¥(6) ={p|p€d}
Moreover, let f* be the M*-map for ', defined by setting f*(5) = ¢, for
every § € tr(lg).
We have to prove that M* is a Kripke model (easy) and that f* is an
M*-map (also easy).



Constructing a countermodel

Lemma. If proof search terminates in step 3, then there is an M-map for 'y
such that Iy is refuted by the M-map.

Proof. Consider Ik, the non-initial topmost nested sequent where the
algorithm stopped. We define the model M* = (WX, R*, v*) as follows:
> WX =66 € tr(Tx))
> 6R*y iff v is a child of 6 in tr(Ix)
> v¥(6) ={p|p€d}
Moreover, let f* be the M*-map for ', defined by setting f*(5) = ¢, for
every § € tr(lg).
We have to prove that M* is a Kripke model (easy) and that f* is an
M*-map (also easy).
Next, we need to prove that, for all formulas A:

if A €6 e tr(Fx) then M*, £(5) 1= A
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Semantic completeness for labK4




Rules of labK4, a proof system for K4

init

R, x:p,I = A, x:p

R, XA, x:B, = A
MR XAANBT = A

RXAT=>A RxBTl=A
R XAV BT=A

RIT=AXxA RxBIl=A

Vi

—L

R, x:A— B, = A

xRy, R, y:A, x:0A, T = A
? XRy, R, x:0A,T = A
xRy, R, y:A, T = A
R, x:OA, T = A

y fresh

rirn

I ——
Rx:L, = A
RIT=>AxA RI=AXB
RIT=>AXxAAB
R, = A, x:A,x:B

\

"RT=AXxAVB
xX:A,RT= A xB

TR = A xA B

XRy, R, = A,y:A
R, = A, x:0A

y fresh

XRy,R,T = A, x:0A, y:A
XxRy,R,T = A, x:0A

Or

xRz, xRy,yRz,R,T = A
tr

xRy,yRz,R,T = A

y fresh means y # x and y does not occurin RUllU A



Sources of non-termination

" 12,1:00,2:0,2:0,2: =

o

" 1:2,1:00,2:9,2:g =
=R

1:2,1:0q9,2:.q =
1:2,1:09 =



labK4°, a cumulative version of labK4

int ———m— I ———
R, x:p, I = A, x:p Rx:L, I = A
R, x:AAB,x:A,x:B, T = A RIT=>AxAANBXxA RTIT=AXxAANB,xB
T RXAABTI oA e R = A, xANB
R,IT= A xAVB,x:A,x:B RxX:A,xAVB,TT=>A RxBxAVvVBIT=A
T RT = A XA VB " R XAVB, = A
X:A,RT= A Xx:A—B,x:B R, x:A—-B, = AXxA RxBxA->BTl=A
RIS A XA B o RXA Bl =A
xRy, R, y:A,x:0A, T = A XRy,R,T = A, x:0A,y:A
[u] fresh
xRy, R, x:0A,T = A TR =AxoA T
XRy,R,y: A, x:OA, T = A xRy, R, T = A, x:0A, y:A
fresh o
RXOAT=A % "TXRY,RT = A, x:0A

xRz,xRy,yRz,R,T = A
t
' xRy,yRz,R,T = A

y fresh means y # x and y does not occurin RUT U A



Redundant rule applications

Intuitively: A rule application R is redundant at a sequent S if S already
contains the formulas that would be introduced in one premiss of R.



Redundant rule applications

Intuitively: A rule application R is redundant at a sequent S if S already
contains the formulas that would be introduced in one premiss of R.

Formally: A rule application R to formulas in S = R, = A is redundant
if condition (R) is satisfied:
(tr) If xRy and yRz occur in R, then xRz occurs in R;
(AL) lf x:A A B occeurs in T, then both x:A and x:B occur in T;
(AR) If x:A A Boccursin A, then x:A occurs in A or x:B occur in A;
()
(oL) If xRy occurs in R and x:0A occurs in I, then y:A occurs in T;
)

(or) If x:0A occurs in A, then there is a y such that xRy occurs in R and
y:A occurs in A.



Avoid redundant applications of the rules!



Sources of non-termination

- 0R3,2R3,0R2,1R2,0R1 = 0:¢0p,1: 1L, 1:0p, 2:p,2:0p, 3:p, 3:0p
o 0R3,2R3,0R2,1R2,0R1 = 0:¢0p,1:L,1:0p,2:p,2:0p, 3:p
2R3,0R2,1R2,0R1 = 0:¢0p,1:L,1:0p,2:p,2:0p, 3:p
0R2,1R2,0R1 = 0:¢0p,1:1,1:0p,2:p,2:0p
0R2,1R2,0R1 = 0:¢0p,1:1,1:0p,2:p
1R2,0R1 = 0:¢0p,1:1,1:0p,2:p
0R1 = 0:00p, 1:1,1:0p
0R1 = 0:00p,1:L

= 0:00p,0:0L

N 0:¢Op v oL

Or

Or

Or

\%



Limit applications of og and ¢

xRy,R,T = A, y:A XRy,R, y: A, x:OA, T = A
y fresh oL y fresh
R = A, x:0A R, x:OA, T = A
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xRy,R,T = A, y:A XRy,R, y: A, x:OA, T = A
y fresh L y fresh
R = A, x:0A R, x:OA, T = A

Formally: A rule application R to formulas in S = R, = A is redundant

if condition (R) is satisfied:

(or) If x:0A occurs in A, then there is a y such that xRy occurs in R and y:A
occurs in A.



Limit applications of og and ¢

xRy,R,T = A, y:A XRy,R, y: A, x:OA, T = A
y fresh L y fresh
R = A, x:0A R, x:OA, T = A

Formally: A rule application R to formulas in S = R, = A is redundant

if condition (R) is satisfied:

(or) If x:0A occurs in A, then there is a y such that xRy occurs in R and y:A
occurs in A.

(or) If x:0A occurs in A, then either
a) there is a k such that kRx occurs in R and k ~ x; otherwise
b) there is a y such that xRy occurs in R and y:A occurs in A.

If a) holds, we say that x is a copy of k at S



A terminating proof search algorithm for labK4

Is x:I' = x:A derivable in labK4?

0. Place Sy = x:I' = x:A atthe root of 7.

1. For every topmost labelled sequent S; of 7, apply as much as
possible non-redundant instances of the rules:
tr, AL, AR, VL, VR, =L, =R, 0L, OR-

2. If every topmost labelled sequent of 7 is initial, terminate.
~» Xx:[= x:A is derivable in labK4.

3. Otherwise, pick a non-initial topmost labelled sequent Sy of 7.

a) If there are non-redundant Og- or ¢ - rule instances that can be
applied, apply one such instance. Go to Step 1.
b) Otherwise terminate. ~» x:I = x:A is not derivable in labK4.



A terminating proof search algorithm for labK4

Is x:I' = x:A derivable in labK4?

0. Place Sy = x:I' = x:A atthe root of 7.

1. For every topmost labelled sequent S; of 7, apply as much as
possible non-redundant instances of the rules:
tr, AL, AR, VL, VR, =L, —R, 0L, OR.

2. If every topmost labelled sequent of 7 is initial, terminate.
~» Xx:[= x:A is derivable in labK4.

3. Otherwise, pick a non-initial topmost labelled sequent Sy of 7.

a) If there are non-redundant Og- or ¢ - rule instances that can be
applied, apply one such instance. Go to Step 1.
b) Otherwise terminate. ~» x:I = x:A is not derivable in labK4.

Theorem (Termination). Root-first proof search in labK4® terminates in a
finite number of steps.



Validity of sequents

Given asequent S =R,I = A, and a model M = (W, R, v), let
Lb(S) ={x|xe RUTUA},and p:Lb(S) —» W (interpretation).
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Satisfiability of labelled formulas at M under p :

M,p - xRy iff p(x)Rp(y)
M,p - x:A iff M,p(x) - A
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A sequent R, = A has a countermodel iff there are M, p such that:
> M,pE g, forallg e RUT, and
> M,p tE x:D, for all x:D € A.



Validity of sequents

Given asequent S =R,I = A, and a model M = (W, R, v), let
Lb(S) ={x|xe RUTUA},and p:Lb(S) —» W (interpretation).
Satisfiability of labelled formulas at M under p :

M.p xRy iff  p(x)Rp(y)
M,p - x:A iff M,p(x) - A

Satisfiability of sequents at M under p (¢ is xRy or x:A):
MprR T = A ff

if forallp e RUT itholds that M,p I ¢,
then for some x:D € A it holds that M, p I x:D.

A sequent R, = A has a countermodel iff there are M, p such that:
> M,pE g, forallg e RUT, and
> M,p tE x:D, for all x:D € A.
Validity of sequents in a class of frames X :
ExRI=A iff foranypandany Me X, M,pr R, = A



Constructing a countermodel

Lemma. If proof search terminates in step 3, then Sy has a countermodel.

Proof. Consider Sk, the non-initial topmost nested sequent where the
algorithm stopped. We define the model M* = (WX, R*, v*) as follows:
> WX = {x| x occurs in S};
> To define R*, first define:
- xRy iff xRy occurs in R;
— xRk iff x is a O-copy (or ¢-copy) of k.

R* is the transitive closure of R U RJ'.
> v¥(x) ={p | x:p occurs in I}.
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It is easy to verify that M* satisfies the frame condition of transitivity.



Constructing a countermodel

Lemma. If proof search terminates in step 3, then Sy has a countermodel.

Proof. Consider Sk, the non-initial topmost nested sequent where the
algorithm stopped. We define the model M* = (WX, R*, v*) as follows:

> W* = {x | x occurs in S};
> To define R*, first define:

- xRy iff xRy occurs in R;
— xRk iff x is a O-copy (or ¢-copy) of k.

R* is the transitive closure of R U RJ'.
> v¥(x) ={p | x:p occurs in I}.

It is easy to verify that M* satisfies the frame condition of transitivity.

Take p*(x) = x, for each label x occurring in S. Then:
> If x:A occurs in I, then M*, p* E x:A
> If x:A occurs in A, then M*, p* [ x:A



Example

- 0R3,2R3,0R2,1R2,0R1 = 0:¢0p,1:L,1:0p,2:p, 2:0p, 3:p, 3:0p
o 0R3,2R3,0R2,1R2,0R1 = 0:¢0p, 1:L,1:0p,2:p,2:0p, 3:p
2R3,0R2,1R2,0R1 = 0:00p,1:L,1:0p, 2:p, 2:0p, 3:p
T 0R2,1R2,0R1 = 0:00p,1:1,1:0p, 2:p, 2:0p
0R2,1R2,0R1 = 0:¢0Op,1:1,1:0p,2:p
1R2,0R1 = 0:¢0p,1:1,1:0p,2:p
0R1 = 0:00p,1:L, 1:0p
0R1 = 0:00p, 1:L

= 0:00p,0:0.L

"o 0:0op v oL
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Or
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Example

- 0R3,2R3,0R2,1R2,0R1 = 0:¢0p,1:L,1:0p,2:p, 2:0p, 3:p, 3:0p
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Summing up

fml. invertible | analyti- | termination counterm. modu-
interpr. rules city proof search constr. larity
G3cp yes yes yes yes, easy! yes, easy! n/a
G3K yes no yes yes, easy! yes, not easy no
NK U X® yes yes yes yes yes, easy! 45-clause
labK U X ‘ no ‘ yes yes ‘ yes, for most yes, easy! yes



End of content for today’s lecture!

Questions?



Exercises

1. Check whether oo(p v o(p — L)) is valid in K4 using the
terminating algorithm for labK4. If the formula is not valid, produce a
countermodel.

2. Let M* be the countermodel for a labelled sequent S. Verify that
M* satisfies the frame condition of transitivity.
Then, for p*(x) = x, for each label x occurring in S, verify that the
Truth Lemma holds, for the cases:
> If x:0A occurs in T, then M, p* = x:0A
> If x:0A occurs in A, then M*, p* I x:0A



