Proof Theory of Modal Logic

Lecture 4 Semantic Completeness

Marianna Girlando

ILLC, Universtiy of Amsterdam

5th Tsinghua Logic Summer School Beijing, 14 - 18 July 2025

Recap

	fml. interpr.	invertible rules	analyti- city	termination proof search	counterm. constr.	modu- larity
G3cp	yes	yes	yes	yes, easy!	yes, easy!	n/a
G3K	yes	no	yes	yes, easy!	yes, not easy	no
NK ∪ X [◊]	yes	yes	yes	?	?	45-clause
labK ∪ X	no	yes	yes	?	?	yes

Today's lecture: Semantic Completeness

- Semantic completeness for NK
- Semantic completeness for labK4

In the literature

For nested sequents: [Bruünler, 2009]: semantic completeness via terminating proof search for all the logics in the S5-cube

For labelled calculi:

- ▶ [Negri, 2005]: Minimality argument ensuring for some logics in the S5-cube (K, T, S4, S5);
- [Negri, 2014]: Semantic completeness via terminating proof search for intermediate logics;
- ▶ [Garg, Genovese and Negri, 2012]: Decision procedures via termination for multi-modal logics (without symmetry).

Semantic completeness for NK

NK: recap

 $A_1, \ldots, A_m, [\Delta_1], \ldots, [\Delta_n]$

NK: recap

$$A_1,\ldots,A_m,[\Delta_1],\ldots,[\Delta_n]$$

$$\begin{array}{ccc} \operatorname{init} \frac{}{ \Gamma\{\rho,\overline{\rho}\} } & \wedge \frac{ \Gamma\{A\} & \Gamma\{B\} }{ \Gamma\{A \wedge B\} } & \vee \frac{ \Gamma\{A,B\} }{ \Gamma\{A \vee B\} } \\ & \square \frac{ \Gamma\{[A]\} }{ \Gamma\{\square A\} } & \diamond \frac{ \Gamma\{\diamondsuit A,[A,\Delta]\} }{ \Gamma\{\diamondsuit A,[\Delta]\} } \end{array}$$

NK: recap

$$A_1, \ldots, A_m, [\Delta_1], \ldots, [\Delta_n]$$

$$\begin{split} & \operatorname{init} \frac{}{\Gamma\{\rho, \overline{\rho}\}} & \wedge \frac{\Gamma\{A\} - \Gamma\{B\}}{\Gamma\{A \wedge B\}} & \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}} \\ & \Box \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} & \diamond \frac{\Gamma\{\diamondsuit A, [A, \Delta]\}}{\Gamma\{\diamondsuit A, [\Delta]\}} \end{split}$$

For a nested sequent Γ and a model $\mathcal{M} = \langle W, R, v \rangle$, an \mathcal{M} -map for Γ is a map $f : tr(\Gamma) \to W$ such that whenever δ is a child of γ in $tr(\Gamma)$, then $f(\gamma)Rf(\delta)$.

A nested sequent Γ is satisfied by an \mathcal{M} -map for Γ iff

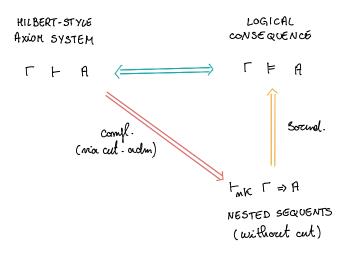
$$\mathcal{M}, f(\delta) \models B$$
, for some $\delta \in tr(\Gamma)$, for some $B \in \delta$

A nested sequent Γ is refuted by an \mathcal{M} -map for Γ iff

$$\mathcal{M}, f(\delta) \not\models B$$
, for all $\delta \in tr(\Gamma)$, for all $B \in \delta$

A nested sequent is valid iff it is satisfied by all \mathcal{M} -maps for Γ , for all models \mathcal{M} .

Roadmap



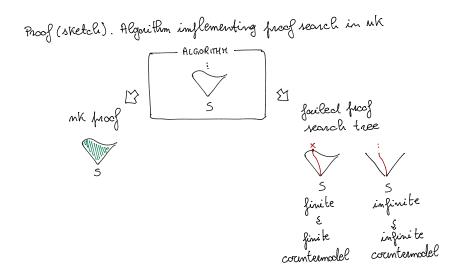
Semantic completeness

Lemma (Proof or Countermodel). For Γ nested sequent, either Γ is derivable in NK or there is an \mathcal{M} -map for Γ such that Γ is refuted by the \mathcal{M} -map.

Theorem (Semantic Completeness). If $\Gamma \models A$, then the nested sequent $\overline{\Gamma} \lor A$ is derivable in NK.

Lemma (Proof or Countermodel). For Γ nested sequent, either Γ is derivable in NK or there is an \mathcal{M} -map for Γ such that Γ is refuted by the \mathcal{M} -map.

Lemma (Proof or Countermodel). For Γ nested sequent, either Γ is derivable in NK or there is an \mathcal{M} -map for Γ such that Γ is refuted by the \mathcal{M} -map.



FINITE

Lemma (Proof or Countermodel). For Γ nested sequent, either Γ is derivable in NK or there is an \mathcal{M} -map for Γ such that Γ is refuted by the \mathcal{M} -map.

Proof (sketch). Algorithm implementing froof search in WK ALGORITHM

FINITE

Lemma (Proof or Countermodel). For Γ nested sequent, either Γ is derivable in NK or there is an \mathcal{M} -map for Γ such that Γ is refuted by the \mathcal{M} -map.

Proof (sketch). Algorithm implementing froof search in MK ALGORITHM * decision procedure for K!

Termination

$$\begin{split} & \operatorname{init} \frac{}{\Gamma\{\boldsymbol{p}, \overline{\boldsymbol{p}}\}} & \wedge \frac{\Gamma\{\boldsymbol{A}\} - \Gamma\{\boldsymbol{B}\}}{\Gamma\{\boldsymbol{A} \wedge \boldsymbol{B}\}} & \vee \frac{\Gamma\{\boldsymbol{A}, \boldsymbol{B}\}}{\Gamma\{\boldsymbol{A} \vee \boldsymbol{B}\}} \\ & \Box \frac{\Gamma\{[\boldsymbol{A}]\}}{\Gamma\{\Box \boldsymbol{A}\}} & \diamond \frac{\Gamma\{\diamondsuit \boldsymbol{A}, [\boldsymbol{A}, \boldsymbol{\Delta}]\}}{\Gamma\{\diamondsuit \boldsymbol{A}, [\boldsymbol{\Delta}]\}} \end{split}$$

Rules of NK^c

$$\frac{\Gamma\{A \land B, A\} \quad \Gamma\{A \land B, B\}}{\Gamma\{A \land B\}} \quad \vee \frac{\Gamma\{A \lor B, A, B\}}{\Gamma\{A \lor B\}}$$

$$\frac{\Gamma\{\Box A, [A]\}}{\Gamma\{\Box A\}} \quad \Leftrightarrow \frac{\Gamma\{\diamondsuit A, [A, \Delta]\}}{\Gamma\{\diamondsuit A, [\Delta]\}}$$

Rules of NK^c

$$\frac{\Gamma\{A \land B, A\} \quad \Gamma\{A \land B, B\}}{\Gamma\{A \land B\}} \quad \vee \frac{\Gamma\{A \lor B, A, B\}}{\Gamma\{A \lor B\}}$$

$$= \frac{\Gamma\{\Box A, [A]\}}{\Gamma\{\Box A\}} \quad \diamond \frac{\Gamma\{\diamondsuit A, [A, \Delta]\}}{\Gamma\{\diamondsuit A, [\Delta]\}}$$

Proposition. NK and NK^c are equivalent.

Rules of NK^c

Proposition. NK and NK^c are equivalent.

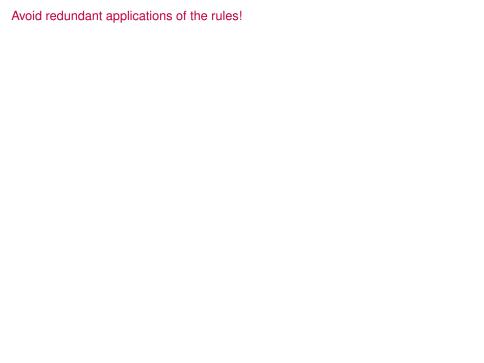
The set-nested sequent of a nested sequent $A_1, \ldots, A_n, [\Delta_1], \ldots, [\Delta_m]$ is the underlying set $A_1, \ldots, A_n, [\Lambda_1], \ldots, [\Lambda_m]$, where $\Lambda_1, \ldots, \Lambda_m$ are the set-nested sequents of $\Delta_1, \ldots, \Delta_m$.

Rules of NK^c

Proposition. NK and NK^c are equivalent.

The set-nested sequent of a nested sequent $A_1, \ldots, A_n, [\Delta_1], \ldots, [\Delta_m]$ is the underlying set $A_1, \ldots, A_n, [\Lambda_1], \ldots, [\Lambda_m]$, where $\Lambda_1, \ldots, \Lambda_m$ are the set-nested sequents of $\Delta_1, \ldots, \Delta_m$.

A rule application is redundant if the set-nested sequent of one of its premisses is the same as the set-nested sequent of its conclusion.



A terminating proof search algorithm for NK^c

Is Γ derivable in NK^c?

- 0. Place $\Gamma_0 = \Gamma$ at the root of \mathcal{T} .
- 1. For every topmost nested sequent Γ_i of \mathcal{T} , apply as much as possible non-redundant instances of the rules: \land , \lor , \diamondsuit .
- 2. If every topmost nested sequent of \mathcal{T} is initial, terminate. $\rightsquigarrow \Gamma_0$ is derivable in NK°.
- 3. Otherwise, pick a non-initial topmost nested sequent Γ_k of \mathcal{T} .
 - a) If there is a non-redundant □-rule instances that can be applied, apply one such instance. Go to Step 1.
 - b) Otherwise terminate. $\rightsquigarrow \Gamma_0$ is not derivable in NK^c.

A terminating proof search algorithm for NK^c

Is Γ derivable in NK^c?

- 0. Place $\Gamma_0 = \Gamma$ at the root of \mathcal{T} .
- 1. For every topmost nested sequent Γ_i of \mathcal{T} , apply as much as possible non-redundant instances of the rules: \land , \lor , \diamondsuit .
- 2. If every topmost nested sequent of \mathcal{T} is initial, terminate. $\rightsquigarrow \Gamma_0$ is derivable in NK°.
- 3. Otherwise, pick a non-initial topmost nested sequent Γ_k of \mathcal{T} .
 - a) If there is a non-redundant □-rule instances that can be applied, apply one such instance. Go to Step 1.
 - b) Otherwise terminate. $\rightsquigarrow \Gamma_0$ is not derivable in NK^c.

Theorem (Termination). Root-first proof search in NK^c terminates in a finite number of steps.

Constructing a countermodel

Lemma. If proof search terminates in step 3, then there is an \mathcal{M} -map for Γ_0 such that Γ_0 is refuted by the \mathcal{M} -map.

Proof. Consider Γ_k , the non-initial topmost nested sequent where the algorithm stopped. We define the model $\mathcal{M}^{\times} = \langle W^{\times}, R^{\times}, v^{\times} \rangle$ as follows:

- $W^{\times} = \{ \delta \mid \delta \in tr(\Gamma_k) \}$
- ▶ $\delta R^{\times} \gamma$ iff γ is a child of δ in $tr(\Gamma_k)$
- $v^{\times}(\delta) = \{ p \mid \bar{p} \in \delta \}$

Moreover, let f^{\times} be the \mathcal{M}^{\times} -map for Γ_k defined by setting $f^{\times}(\delta) = \delta$, for every $\delta \in tr(\Gamma_k)$.

Constructing a countermodel

Lemma. If proof search terminates in step 3, then there is an \mathcal{M} -map for Γ_0 such that Γ_0 is refuted by the \mathcal{M} -map.

Proof. Consider Γ_k , the non-initial topmost nested sequent where the algorithm stopped. We define the model $\mathcal{M}^{\times} = \langle W^{\times}, R^{\times}, v^{\times} \rangle$ as follows:

- $W^{\times} = \{ \delta \mid \delta \in tr(\Gamma_k) \}$
- ▶ $\delta R^{\times} \gamma$ iff γ is a child of δ in $tr(\Gamma_k)$
- $v^{\times}(\delta) = \{ p \mid \bar{p} \in \delta \}$

Moreover, let f^{\times} be the \mathcal{M}^{\times} -map for Γ_k defined by setting $f^{\times}(\delta) = \delta$, for every $\delta \in tr(\Gamma_k)$.

We have to prove that \mathcal{M}^{\times} is a Kripke model (easy) and that f^{\times} is an \mathcal{M}^{\times} -map (also easy).

Constructing a countermodel

Lemma. If proof search terminates in step 3, then there is an \mathcal{M} -map for Γ_0 such that Γ_0 is refuted by the \mathcal{M} -map.

Proof. Consider Γ_k , the non-initial topmost nested sequent where the algorithm stopped. We define the model $\mathcal{M}^{\times} = \langle W^{\times}, R^{\times}, v^{\times} \rangle$ as follows:

- ▶ $\delta R^{\times} \gamma$ iff γ is a child of δ in $tr(\Gamma_k)$
- $v^{\times}(\delta) = \{ p \mid \bar{p} \in \delta \}$

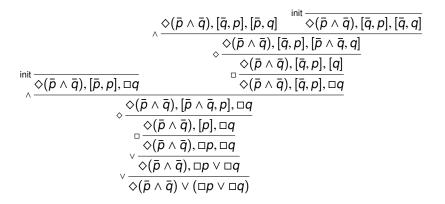
Moreover, let f^{\times} be the \mathcal{M}^{\times} -map for Γ_k defined by setting $f^{\times}(\delta) = \delta$, for every $\delta \in tr(\Gamma_k)$.

We have to prove that \mathcal{M}^{\times} is a Kripke model (easy) and that f^{\times} is an \mathcal{M}^{\times} -map (also easy).

Next, we need to prove that, for all formulas A:

if
$$A \in \delta \in tr(\Gamma_k)$$
 then $\mathcal{M}^{\times}, f^{\times}(\delta) \not\models A$

Example



Semantic completeness for labK4

Rules of labK4, a proof system for K4

$$\begin{array}{c} \operatorname{init} \overline{\mathcal{R}, x : p, \Gamma \Rightarrow \Delta, x : p} \\ \\ \begin{array}{c} \mathcal{R}, x : A, x : B, \Gamma \Rightarrow \Delta \\ \\ \mathcal{R}, x : A \land B, \Gamma \Rightarrow \Delta \end{array} \end{array}$$

$$\begin{array}{c} \mathcal{R}, x : A, A \land B, \Gamma \Rightarrow \Delta \\ \\ \mathcal{R}, x : A \land B, \Gamma \Rightarrow \Delta \end{array}$$

$$\begin{array}{c} \mathcal{R}, x : A, \Gamma \Rightarrow \Delta \\ \\ \mathcal{R}, x : A \land B, \Gamma \Rightarrow \Delta \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land R, \Gamma \Rightarrow \Delta, x : B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \end{array}$$

$$\begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B$$

y fresh means $y \neq x$ and *y* does not occur in $\mathcal{R} \cup \Gamma \cup \Delta$

Sources of non-termination

$$\vdots$$

$$\frac{1:2,1:\Box q,2:q,2:q\Rightarrow}{1:2,1:\Box q,2:q,2:q\Rightarrow}$$

$$\frac{1:2,1:\Box q,2:q\Rightarrow}{1:2,1:\Box q,2:q\Rightarrow}$$

$$1:2,1:\Box q\Rightarrow$$

labK4^c, a cumulative version of labK4

$$\begin{array}{c} \inf \overline{\mathcal{R}, x : \rho, \Gamma \Rightarrow \Delta, x : \rho} \\ \\ \mathcal{R}, x : A \land B, x : A, x : B, \Gamma \Rightarrow \Delta \\ \\ \wedge_{\mathsf{L}} \\ \hline \\ \mathcal{R}, x : A \land B, x : A \land B, x : A \land B, x : B \\ \\ \mathcal{R}, x : A \land B, \Gamma \Rightarrow \Delta \\ \\ \vee_{\mathsf{R}} \\ \hline \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \lor B, x : A \Rightarrow B \\ \\ \vee_{\mathsf{R}} \\ \hline \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \lor B, x : A \Rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \lor B \\ \\ \hline \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \lor B \\ \\ \hline \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \lor B \\ \\ \hline \\ \mathcal{R}, X : A, \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \land B \\ \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow \Delta \\ \\ \hline \\ \mathcal{R}, x : A \rightarrow B, \Gamma \Rightarrow$$

y fresh means $y \neq x$ and *y* does not occur in $\mathcal{R} \cup \Gamma \cup \Delta$

Redundant rule applications

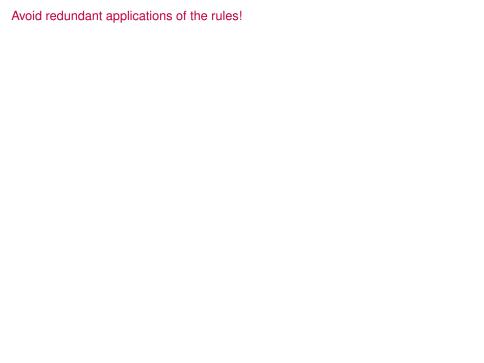
Intuitively: A rule application R is redundant at a sequent $\mathcal S$ if $\mathcal S$ already contains the formulas that would be introduced in one premiss of R.

Redundant rule applications

Intuitively: A rule application R is redundant at a sequent \mathcal{S} if \mathcal{S} already contains the formulas that would be introduced in one premiss of R.

Formally: A rule application R to formulas in S = R, $\Gamma \Rightarrow \Delta$ is redundant if condition (R) is satisfied:

- (tr) If xRy and yRz occur in \mathcal{R} , then xRz occurs in \mathcal{R} ;
- $(Λ_L)$ If x:A ∧ B occurs in Γ, then both x:A and x:B occur in Γ;
- (\land _R) If $x:A \land B$ occurs in \triangle , then x:A occurs in \triangle or x:B occur in \triangle ; (...)
- (\square_L) If xRy occurs in \mathcal{R} and $x:\square A$ occurs in Γ , then y:A occurs in Γ ;
- (\square_R) If $x:\square A$ occurs in Δ , then there is a y such that xRy occurs in $\mathcal R$ and y:A occurs in Δ .



Sources of non-termination

$$\frac{0R3, 2R3, 0R2, 1R2, 0R1 \Rightarrow 0: \Diamond \Box p, 1: \bot, 1: \Box p, 2: p, 2: \Box p, 3: p, 3: \Box p}{0R3, 2R3, 0R2, 1R2, 0R1 \Rightarrow 0: \Diamond \Box p, 1: \bot, 1: \Box p, 2: p, 2: \Box p, 3: p}$$

$$\frac{2R3, 0R2, 1R2, 0R1 \Rightarrow 0: \Diamond \Box p, 1: \bot, 1: \Box p, 2: p, 2: \Box p, 3: p}{0R2, 1R2, 0R1 \Rightarrow 0: \Diamond \Box p, 1: \bot, 1: \Box p, 2: p, 2: \Box p}$$

$$\frac{0R2, 1R2, 0R1 \Rightarrow 0: \Diamond \Box p, 1: \bot, 1: \Box p, 2: p}{0R2, 1R2, 0R1 \Rightarrow 0: \Diamond \Box p, 1: \bot, 1: \Box p, 2: p}$$

$$\frac{0R1 \Rightarrow 0: \Diamond \Box p, 1: \bot, 1: \Box p}{0R1 \Rightarrow 0: \Diamond \Box p, 1: \bot}$$

$$\frac{0R1 \Rightarrow 0: \Diamond \Box p, 0: \Box \bot}{0R0 \Rightarrow 0: \Diamond \Box p, 0: \Box \bot}$$

Limit applications of \square_R and \diamondsuit_L

$$\downarrow \frac{xRy, \mathcal{R}, y: A, x: \Diamond A, \Gamma \Rightarrow \Delta}{\mathcal{R}, x: \Diamond A, \Gamma \Rightarrow \Delta} \text{ y fres}$$

Limit applications of \square_R and \diamondsuit_L

Formally: A rule application R to formulas in $S = \mathcal{R}, \Gamma \Rightarrow \Delta$ is redundant if condition (R) is satisfied:

 (\square_R) If $x:\square A$ occurs in Δ , then there is a y such that xRy occurs in $\mathcal R$ and y:A occurs in Δ .

Limit applications of \square_R and \diamondsuit_L

Formally: A rule application R to formulas in S = R, $\Gamma \Rightarrow \Delta$ is redundant if condition (R) is satisfied:

- (\square_R) If $x:\square A$ occurs in Δ , then there is a y such that xRy occurs in $\mathcal R$ and y:A occurs in Δ .
- (\square_R) If $x:\square A$ occurs in Δ , then either
 - a) there is a k such that kRx occurs in R and $k \sim x$; otherwise
 - b) there is a y such that xRy occurs in \mathcal{R} and y:A occurs in Δ .

If a) holds, we say that x is a copy of k at S

Is $x:\Gamma \Rightarrow x:A$ derivable in labK4?

- 0. Place $S_0 = x:\Gamma \Rightarrow x:A$ at the root of \mathcal{T} .
- 1. For every topmost labelled sequent S_i of T, apply as much as possible non-redundant instances of the rules:

$$tr, \wedge_L, \wedge_R, \vee_L, \vee_R, \rightarrow_L, \rightarrow_R, \square_L, \diamondsuit_R.$$

- 2. If every topmost labelled sequent of $\ensuremath{\mathcal{T}}$ is initial, terminate.
 - \rightsquigarrow $x:\Gamma \Rightarrow x:A$ is derivable in labK4.
- 3. Otherwise, pick a non-initial topmost labelled sequent S_k of T.
 - a) If there are non-redundant □_R- or ⋄_L- rule instances that can be applied, apply one such instance. Go to Step 1.
 - b) Otherwise terminate. $\rightsquigarrow x:\Gamma \Rightarrow x:A$ is not derivable in labK4.

Is $x:\Gamma \Rightarrow x:A$ derivable in labK4?

- 0. Place $S_0 = x:\Gamma \Rightarrow x:A$ at the root of \mathcal{T} .
- 1. For every topmost labelled sequent S_i of T, apply as much as possible non-redundant instances of the rules:

$$tr, \wedge_L, \wedge_R, \vee_L, \vee_R, \rightarrow_L, \rightarrow_R, \square_L, \diamondsuit_R.$$

- 2. If every topmost labelled sequent of $\ensuremath{\mathcal{T}}$ is initial, terminate.
 - \rightsquigarrow $x:\Gamma \Rightarrow x:A$ is derivable in labK4.
- 3. Otherwise, pick a non-initial topmost labelled sequent S_k of T.
 - a) If there are non-redundant □_R- or ⋄_L- rule instances that can be applied, apply one such instance. Go to Step 1.
 - b) Otherwise terminate. $\rightsquigarrow x:\Gamma \Rightarrow x:A$ is not derivable in labK4.

Theorem (Termination). Root-first proof search in labK4^c terminates in a finite number of steps.

Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$, and $\rho : \mathsf{Lb}(S) \to W$ (interpretation).

Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$, and $\rho : \mathsf{Lb}(S) \to W$ (interpretation).

Satisfiability of labelled formulas at ${\mathcal M}$ under ρ :

$$\mathcal{M}, \rho \Vdash xRy$$
 iff $\rho(x)R\rho(y)$
 $\mathcal{M}, \rho \Vdash x:A$ iff $\mathcal{M}, \rho(x) \Vdash A$

Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$, and $\rho : \mathsf{Lb}(S) \to W$ (interpretation).

Satisfiability of labelled formulas at ${\mathcal M}$ under ρ :

$$\mathcal{M}, \rho \Vdash xRy$$
 iff $\rho(x)R\rho(y)$
 $\mathcal{M}, \rho \Vdash x:A$ iff $\mathcal{M}, \rho(x) \Vdash A$

Satisfiability of sequents at M under ρ (φ is xRy or x:A):

$$\mathcal{M}, \rho \Vdash \mathcal{R}, \Gamma \Rightarrow \Delta$$
 iff
$$\text{if for all } \varphi \in \mathcal{R} \cup \Gamma \text{ it holds that } \mathcal{M}, \rho \Vdash \varphi,$$
 then for some $x \colon D \in \Delta$ it holds that $\mathcal{M}, \rho \Vdash x \colon D.$

Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$, and $\rho : \mathsf{Lb}(S) \to W$ (interpretation).

Satisfiability of labelled formulas at $\mathcal M$ under ρ :

$$\mathcal{M}, \rho \Vdash xRy \quad \text{iff} \quad \rho(x)R\rho(y)$$

 $\mathcal{M}, \rho \Vdash x:A \quad \text{iff} \quad \mathcal{M}, \rho(x) \Vdash A$

Satisfiability of sequents at M under ρ (φ is xRy or x:A):

$$\mathcal{M}, \rho \Vdash \mathcal{R}, \Gamma \Rightarrow \Delta \quad iff$$

if for all $\varphi \in \mathcal{R} \cup \Gamma$ it holds that $\mathcal{M}, \rho \Vdash \varphi$, then for some $x:D \in \Delta$ it holds that $\mathcal{M}, \rho \Vdash x:D$.

A sequent $\mathcal{R}, \Gamma \Rightarrow \Delta$ has a countermodel iff there are \mathcal{M}, ρ such that:

- $\triangleright \mathcal{M}, \rho \models \varphi$, for all $\varphi \in \mathcal{R} \cup \Gamma$, and
- ▶ $\mathcal{M}, \rho \not\models x:D$, for all $x:D \in \Delta$.

Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$, and $\rho : \mathsf{Lb}(S) \to W$ (interpretation).

Satisfiability of labelled formulas at ${\mathcal M}$ under ρ :

$$\mathcal{M}, \rho \Vdash xRy \quad \text{iff} \quad \rho(x)R\rho(y)$$

 $\mathcal{M}, \rho \Vdash x:A \quad \text{iff} \quad \mathcal{M}, \rho(x) \Vdash A$

Satisfiability of sequents at M under ρ (φ is xRy or x:A):

$$\mathcal{M}, \rho \Vdash \mathcal{R}, \Gamma \Rightarrow \Delta$$
 iff

if for all $\varphi \in \mathcal{R} \cup \Gamma$ it holds that $\mathcal{M}, \rho \Vdash \varphi$, then for some $x:D \in \Delta$ it holds that $\mathcal{M}, \rho \Vdash x:D$.

A sequent $\mathcal{R}, \Gamma \Rightarrow \Delta$ has a countermodel iff there are \mathcal{M}, ρ such that:

- $\triangleright \mathcal{M}, \rho \models \varphi$, for all $\varphi \in \mathcal{R} \cup \Gamma$, and
- ▶ $\mathcal{M}, \rho \not\models x:D$, for all $x:D \in \Delta$.

Validity of sequents in a class of frames X:

$$\models_{\mathcal{X}} \mathcal{R}, \Gamma \Rightarrow \Delta \quad \textit{iff} \quad \text{ for any } \rho \text{ and any } \mathcal{M} \in \mathcal{X}, \ \mathcal{M}, \rho \Vdash \mathcal{R}, \Gamma \Rightarrow \Delta$$

Constructing a countermodel

Lemma. If proof search terminates in step 3, then S_0 has a countermodel.

Proof. Consider S_k , the non-initial topmost nested sequent where the algorithm stopped. We define the model $\mathcal{M}^{\times} = \langle W^{\times}, R^{\times}, v^{\times} \rangle$ as follows:

- ▶ To define R[×], first define:
 - $xR_1^{\times}y$ iff xRy occurs in \mathcal{R} ;
 - $xR_2^{\times}k$ iff x is a □-copy (or \diamondsuit -copy) of k.

 \mathcal{R}^{\times} is the transitive closure of $R_1^{\times} \cup R_2^{\times}$.

 $\triangleright v^{\times}(x) = \{p \mid x : p \text{ occurs in } \Gamma\}.$

Constructing a countermodel

Lemma. If proof search terminates in step 3, then S_0 has a countermodel.

Proof. Consider S_k , the non-initial topmost nested sequent where the algorithm stopped. We define the model $\mathcal{M}^{\times} = \langle W^{\times}, R^{\times}, v^{\times} \rangle$ as follows:

- \triangleright $W^{\times} = \{x \mid x \text{ occurs in } S\};$
- ▶ To define R[×], first define:
 - $xR_1^{\times}y$ iff xRy occurs in \mathcal{R} ;
 - $xR_2^{\times}k$ iff x is a □-copy (or \diamondsuit -copy) of k.

 \mathcal{R}^{\times} is the transitive closure of $R_1^{\times} \cup R_2^{\times}$.

 $v^{\times}(x) = \{p \mid x:p \text{ occurs in } \Gamma\}.$

It is easy to verify that \mathcal{M}^{\times} satisfies the frame condition of transitivity.

Constructing a countermodel

Lemma. If proof search terminates in step 3, then S_0 has a countermodel.

Proof. Consider S_k , the non-initial topmost nested sequent where the algorithm stopped. We define the model $\mathcal{M}^{\times} = \langle W^{\times}, R^{\times}, v^{\times} \rangle$ as follows:

- \triangleright $W^{\times} = \{x \mid x \text{ occurs in } S\};$
- ▶ To define *R*[×], first define:
 - $xR_1^{\times}y$ iff xRy occurs in \mathcal{R} ;
 - $xR_2^{\times}k$ iff x is a □-copy (or \diamondsuit -copy) of k.

 \mathcal{R}^{\times} is the transitive closure of $R_1^{\times} \cup R_2^{\times}$.

It is easy to verify that \mathcal{M}^{\times} satisfies the frame condition of transitivity.

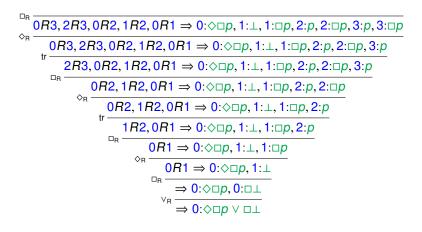
Take $\rho^{\times}(x) = x$, for each label x occurring in S. Then:

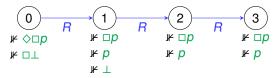
- ▶ If x:A occurs in Γ , then $\mathcal{M}^{\times}, \rho^{\times} \models x:A$
- ▶ If x:A occurs in Δ , then \mathcal{M}^{\times} , $\rho^{\times} \not\models x:A$

Example

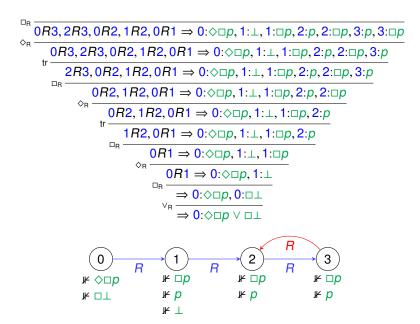
```
0R3, 2R3, 0R2, 1R2, 0R1 \Rightarrow 0:\Diamond \Box p, 1:\bot, 1:\Box p, 2:p, 2:\Box p, 3:p, 3:\Box p
     \overline{0R3,2R3,0R2,1R2,0R1} \Rightarrow 0: \Diamond \Box p,1:\bot,1:\Box p,2:p,2:\Box p,3:p
          2R3,0R2,1R2,0R1 \Rightarrow 0:\Diamond \Box p,1:\bot,1:\Box p,2:p,2:\Box p,3:p
     ΠR
                   0R2, 1R2, 0R1 \Rightarrow 0: \Diamond \Box p, 1: \bot, 1: \Box p, 2: p, 2: \Box p
                        0R2, 1R2, \overline{0R1} \Rightarrow 0:\Diamond \Box p, 1:\bot, 1:\Box p, 2:p
                              1R2,0R1 \Rightarrow 0:\Diamond \Box p,1:\bot,\overline{1:\Box p,2:p}
                         \Box_{R}
                                      0R1 \Rightarrow 0: \Diamond \Box p, \overline{1:\bot,1:\Box p}
                                           0R1 \Rightarrow 0: \Diamond \square p. 1: \bot
                                               \Rightarrow 0:\Diamond \Box p, 0:\Box \bot
                                               \Rightarrow 0:\Diamond \Box \Diamond \lor \Box \bot
```

Example





Example



Summing up

	fml. interpr.	invertible rules	analyti- city	termination proof search	counterm. constr.	modu- larity
G3cp	yes	yes	yes	yes, easy!	yes, easy!	n/a
G3K	yes	no	yes	yes, easy!	yes, not easy	no
NK ∪ X [◊]	yes	yes	yes	yes	yes, easy!	45-clause
labK ∪ X	no	yes	yes	yes, for most	yes, easy!	yes

End of content for today's lecture!

Questions?

Exercises

- Check whether ◊□(p ∨ □(p → ⊥)) is valid in K4 using the terminating algorithm for labK4. If the formula is not valid, produce a countermodel.
- 2. Let \mathcal{M}^{\times} be the countermodel for a labelled sequent \mathcal{S} . Verify that \mathcal{M}^{\times} satisfies the frame condition of transitivity. Then, for $\rho^{\times}(x) = x$, for each label x occurring in \mathcal{S} , verify that the Truth Lemma holds, for the cases:
 - ▶ If $x: \Box A$ occurs in Γ, then $\mathcal{M}^{\times}, \rho^{\times} \models x: \Box A$
 - ▶ If $x: \Box A$ occurs in Δ , then $\mathcal{M}^{\times}, \rho^{\times} \not\models x: \Box A$