Proof Theory of Modal Logic

Lecture 3
Labelled Proof Systems

Marianna Girlando

ILLC, Universtiy of Amsterdam

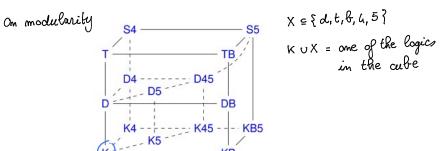
5th Tsinghua Logic Summer School Beijing, 14 - 18 July 2025

Recap

	fml. interpr.	invertible rules	analyti- city	termination proof search	counterm. constr.	modu- larity
G3cp	yes	yes	yes	yes, easy!	yes, easy!	n/a
G3K	yes	no	yes	yes, easy!	yes, not easy	no =
NK∪X [◊]	yes	yes	yes	?	?	45-clause

Recap

	fml. interpr.	invertible rules	analyti- city	termination proof search	counterm. constr.	modu- larity
G3cp	yes	yes	yes	yes, easy!	yes, easy!	n/a
G3K	yes	no	yes	yes, easy!	yes, not easy	no
$NK \cup X^{\diamond}$	yes	yes	yes	?	?	45-clause



Today's lecture: Labelled Proof Systems

- Labelled sequent calculus for K
- Frame conditions: a general recipe

The labelled approach in the literature

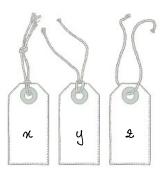
References (non-exhaustive):

- ▶ [Kanger, 1957] Spotted formulas for S5
- ▶ [Fitting, 1983], [Goré 1998] Tableaux + labels
- ▶ [Simpson, 1994], [Viganò, 1998] Natural deduction + labels
- ▶ [Mints, 1997], [Viganò, 2000], [Negri, 2005] Sequent calculus + labels

We follow the approach of Negri:

- Proof analysis in modal logics [Negri, 2005]
- Contraction-free sequent calculi for geometric theories with an application to Barr's theorem [Negri, 2003]

Labelled sequent calculus for K



Enriching the language

$$A, B ::= p \mid \bot \mid A \land B \mid A \lor B \mid A \rightarrow B \mid \Box A \mid \Diamond A$$

Enriching the language

$$A, B ::= p \mid \bot \mid A \land B \mid A \lor B \mid A \rightarrow B \mid \Box A \mid \Diamond A$$

Take countably many variables x, y, z, ... (the lables)

Enriching the language

$$A, B ::= p \mid \bot \mid A \land B \mid A \lor B \mid A \rightarrow B \mid \Box A \mid \Diamond A$$

Take countably many variables x, y, z, ... (the lables)

Labelled formulas

- xRy meaning 'x has access to y'
 - x:A meaning 'x satisfies A'

(relational atoms)

Enriching the language

$$A, B ::= p \mid \bot \mid A \land B \mid A \lor B \mid A \rightarrow B \mid \Box A \mid \Diamond A$$

Take countably many variables x, y, z, ... (the lables)

Labelled formulas

xRy meaning 'x has access to y'

(relational atoms)

x:A meaning 'x satisfies A'

Labelled sequent

$$\mathcal{R}, \Gamma \Rightarrow \Delta$$

where

- R is a multiset of relational atoms;
- \triangleright Γ , Δ are multisets of labelled formulas *without* relational atoms.

Enriching the language

$$A, B ::= p \mid \bot \mid A \land B \mid A \lor B \mid A \rightarrow B \mid \Box A \mid \Diamond A$$

Take countably many variables x, y, z, ... (the lables)

Labelled formulas

xRy meaning 'x has access to y'

(relational atoms)

x:A meaning 'x satisfies A'

Labelled sequent

$$\mathcal{R}, \Gamma \Rightarrow \Delta$$

where

- R is a multiset of relational atoms;
- $ightharpoonup \Gamma$, Δ are multisets of labelled formulas *without* relational atoms.

Labelled sequents lack a formula interpretation

Enriching the language

$$A, B ::= p \mid \bot \mid A \land B \mid A \lor B \mid A \rightarrow B \mid \Box A \mid \Diamond A$$

Take countably many variables x, y, z, ... (the lables)

Labelled formulas

- xRy meaning 'x has access to y'
- x:A meaning 'x satisfies A'

Labelled sequent

$$\mathcal{R},\Gamma\Rightarrow\Delta$$

N.B. This is not (typed) \(\lambda\)-calculus \(\alpha\): A

(relational atoms)

where

- R is a multiset of relational atoms:
- $ightharpoonup \Gamma$, Δ are multisets of labelled formulas *without* relational atoms.

Labelled sequents lack a formula interpretation

Rules of labK

Rules of labK

$$\begin{array}{c} \operatorname{init} \overline{\mathcal{R}, x : \rho, \Gamma \Rightarrow \Delta, x : \rho} \\ \\ \begin{array}{c} \mathcal{R}, x : A, x : B, \Gamma \Rightarrow \Delta \\ \\ \mathcal{R}, x : A \land B, \Gamma \Rightarrow \Delta \end{array} \end{array} \qquad \stackrel{\wedge_L}{\longrightarrow_L} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A & \mathcal{R}, \Gamma \Rightarrow \Delta, X : B \\ \\ \mathcal{R}, X : A \land B, \Gamma \Rightarrow \Delta \end{array} \qquad \stackrel{\wedge_L}{\longrightarrow_L} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A & \mathcal{R}, \Gamma \Rightarrow \Delta, X : B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \land B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_L} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \land B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \land B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \land B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \land B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, X : A \rightarrow B \end{array} \qquad \stackrel{\vee_R}{\longrightarrow_R} \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow$$

Rules of labK

$$\begin{array}{c} \operatorname{init} \overline{\mathcal{R}, x : \rho, \Gamma \Rightarrow \Delta, x : \rho} \\ \\ \begin{array}{c} \mathcal{R}, x : A, x : B, \Gamma \Rightarrow \Delta \\ \\ \mathcal{R}, x : A \land B, \Gamma \Rightarrow \Delta \end{array} \end{array} \qquad \qquad \wedge \square \\ \\ \begin{array}{c} \mathcal{R}, x : A, \Lambda \cap \mathcal{R}, \Gamma \Rightarrow \Delta \\ \\ \mathcal{R}, x : A \wedge \mathcal{R}, \Gamma \Rightarrow \Delta \end{array} \qquad \wedge \square \\ \\ \begin{array}{c} \mathcal{R}, x : A \cap \mathcal{R}, \Gamma \Rightarrow \Delta \\ \\ \mathcal{R}, x : A \wedge \mathcal{R}, \Gamma \Rightarrow \Delta \end{array} \qquad \qquad \wedge \square \\ \\ \begin{array}{c} \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \cap \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \wedge \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \wedge \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \wedge \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \wedge \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \wedge \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \wedge \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \wedge \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, x : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow \mathcal{R} \\ \\ \mathcal{R}, \Gamma \Rightarrow \Delta, \chi : A \rightarrow \mathcal{R} \\$$

y fresh means $y \neq x$ and y does not occur in $\mathcal{R} \cup \Gamma \cup \Delta$

Rules of labK

$$\begin{array}{c} \operatorname{init} \overline{\mathcal{R}, x : p, \Gamma \Rightarrow \Delta, x : p} \\ \\ \begin{array}{c} \mathcal{R}, x : A, x : B, \Gamma \Rightarrow \Delta \\ \\ \mathcal{R}, x : A \land B, \Gamma \Rightarrow \Delta \end{array} \end{array} \\ \wedge_{\mathsf{L}} \frac{\mathcal{R}, x : A, \mathcal{R} : B, \Gamma \Rightarrow \Delta}{\mathcal{R}, x : A \land B, \Gamma \Rightarrow \Delta} \\ \\ \begin{array}{c} \mathcal{R}, x : A \land B, \Gamma \Rightarrow \Delta \\ \\ \mathcal{R}, x : A \land B, \Gamma \Rightarrow \Delta \end{array} \end{array} \\ \wedge_{\mathsf{L}} \frac{\mathcal{R}, \mathcal{R}, \mathcal{R}$$

y fresh means $y \neq x$ and y does not occur in $\mathcal{R} \cup \Gamma \cup \Delta$

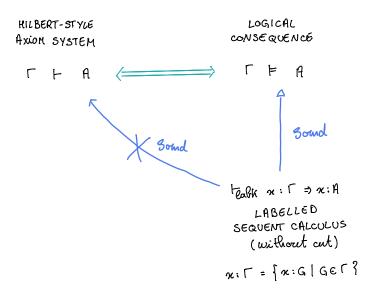
Provability in labK

We write $\vdash_{\mathsf{labK}} \mathcal{R}, \Gamma \Rightarrow \Delta$ if there is a derivation of $\mathcal{R}, \Gamma \Rightarrow \Delta$ in labK.

Example:
$$\vdash_{\mathsf{labK}} \Rightarrow x: (\Diamond p \rightarrow \Box q) \rightarrow \Box (p \rightarrow q)$$

$$\begin{array}{c} \underset{\diamond_{\mathsf{R}}}{\operatorname{init}} \overline{\underbrace{xRy, y : p \Rightarrow y : q, x : \diamond_{p}, y : p}} \\ \xrightarrow{\chi} \overline{\underbrace{xRy, y : A \Rightarrow y : q, x : \diamond_{p}}} \\ \overline{\underbrace{xRy, x : \diamond_{p} \rightarrow \Box_{q}, y : p \Rightarrow y : q}} \\ \xrightarrow{\chi} \overline{\underbrace{xRy, x : \diamond_{p} \rightarrow \Box_{q}, y : p \Rightarrow y : q}} \\ \xrightarrow{\chi} \overline{\underbrace{xRy, x : \diamond_{p} \rightarrow \Box_{q}, y : p \Rightarrow y : q}} \\ \xrightarrow{\Box_{\mathsf{R}}} \overline{\underbrace{xRy, x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow y : p \rightarrow q}} \\ \xrightarrow{\Box_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}} \\ \xrightarrow{\to_{\mathsf{R}}} \overline{\underbrace{x : \diamond_{p} \rightarrow \Box_{q} \Rightarrow x : \Box_{p} \rightarrow q}}$$

Roadmap



Validity of sequents

Given a sequent
$$S = R$$
, $\Gamma \Rightarrow \Delta$, and a model $M = \langle W, R, v \rangle$, let $Lb(S) = \{x \mid x \in R \cup \Gamma \cup \Delta\}$, and $\rho : Lb(S) \rightarrow W$ (interpretation).

Validity of sequents

Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$, and $\rho : \mathsf{Lb}(S) \to W$ (interpretation).

Satisfiability of labelled formulas at ${\mathcal M}$ under ρ :

$$\underline{\mathcal{M}}, \rho \Vdash \underline{xRy} \quad \text{iff} \quad \rho(x)R\rho(y)$$
 $\underline{\mathcal{M}}, \rho \vdash \underline{x:A} \quad \text{iff} \quad \mathcal{M}, \rho(x) \vdash A$

Validity of sequents

Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$, and $\rho : \mathsf{Lb}(S) \to W$ (interpretation).

Satisfiability of labelled formulas at ${\mathcal M}$ under ρ :

$$\mathcal{M}, \rho \Vdash xRy \quad \text{iff} \quad \rho(x)R\rho(y)$$

 $\mathcal{M}, \rho \Vdash x:A \quad \text{iff} \quad \mathcal{M}, \rho(x) \Vdash A$

Satisfiability of sequents at M under ρ (φ is xRy or x:A):

$$\mathcal{M}, \rho \Vdash \mathcal{R}, \Gamma \Rightarrow \Delta \quad \textit{iff}$$

$$\underbrace{if} \quad \text{for all } \varphi \in \mathcal{R} \cup \Gamma \quad \text{it holds that } \mathcal{M}, \rho \Vdash \varphi,$$

$$then \quad \text{for some } x : D \in \Delta \quad \text{it holds that } \mathcal{M}, \rho \Vdash x : D.$$

Validity of sequents

Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$, and $\rho : \mathsf{Lb}(S) \to W$ (interpretation).

Satisfiability of labelled formulas at ${\mathcal M}$ under ρ :

$$\mathcal{M}, \rho \Vdash xRy \quad \text{iff} \quad \rho(x)R\rho(y)$$

 $\mathcal{M}, \rho \Vdash x:A \quad \text{iff} \quad \mathcal{M}, \rho(x) \Vdash A$

Satisfiability of sequents at \mathcal{M} under ρ (φ is xRy or x:A):

$$\mathcal{M}, \rho \Vdash \mathcal{R}, \Gamma \Rightarrow \Delta$$
 iff

if for all $\varphi \in \mathcal{R} \cup \Gamma$ it holds that $\mathcal{M}, \rho \Vdash \varphi$, then for some $x:D \in \Delta$ it holds that $\mathcal{M}, \rho \Vdash x:D$.

A sequent $\mathcal{R}, \Gamma \Rightarrow \Delta$ has a countermodel iff there are \mathcal{M}, ρ such that:

- ▶ $\mathcal{M}, \rho \models \varphi$, for all $\varphi \in \mathcal{R} \cup \Gamma$, and
- ▶ $\mathcal{M}, \rho \not\models x:D$, for all $x:D \in \Delta$.

Validity of sequents

Given a sequent $S = \mathcal{R}, \Gamma \Rightarrow \Delta$, and a model $\mathcal{M} = \langle W, R, v \rangle$, let $\mathsf{Lb}(S) = \{x \mid x \in \mathcal{R} \cup \Gamma \cup \Delta\}$, and $\rho : \mathsf{Lb}(S) \to W$ (interpretation).

Satisfiability of labelled formulas at $\mathcal M$ under ρ :

$$\underbrace{\mathcal{M}, \rho \Vdash xRy \quad \text{iff} \quad \rho(x)R\rho(y)}_{\mathcal{M}, \rho \Vdash x:A \quad \text{iff} \quad \mathcal{M}, \rho(x) \Vdash A}$$

Satisfiability of sequents at \mathcal{M} under ρ (φ is xRy or x:A):

$$\mathcal{M}, \rho \Vdash \mathcal{R}, \Gamma \Rightarrow \Delta$$
 iff

if for all $\varphi \in \mathcal{R} \cup \Gamma$ it holds that $\mathcal{M}, \rho \Vdash \varphi$, then for some $x:D \in \Delta$ it holds that $\mathcal{M}, \rho \Vdash x:D$.

A sequent $\mathcal{R}, \Gamma \Rightarrow \Delta$ has a countermodel iff there are \mathcal{M}, ρ such that:

- $\triangleright \mathcal{M}, \rho \models \varphi$, for all $\varphi \in \mathcal{R} \cup \Gamma$, and
- ▶ $\mathcal{M}, \rho \not\models x:D$, for all $x:D \in \Delta$.

Validity of sequents in a class of frames X:

$$\models_{\mathcal{X}} \mathcal{R}, \Gamma \Rightarrow \Delta \quad \textit{iff} \quad \text{ for any } \rho \text{ and any } \mathcal{M} \in \mathcal{X}, \ \mathcal{M}, \rho \Vdash \mathcal{R}, \Gamma \Rightarrow \Delta$$

Soundness of labK [Negri, 2009]

Theorem (Soundness). If
$$\vdash_{labK} \mathcal{R}, \Gamma \Rightarrow \Delta$$
 then $\models \mathcal{R}, \Gamma \Rightarrow \Delta$

Proof. Induction on \mathbb{R} of observation of $\mathbb{R}, \Gamma \Rightarrow \Delta$.

RRY, $\mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

R, $\Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

Record to prove:

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$ then $\models \mathbb{R}, \Gamma \Rightarrow \Delta$, $x \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$ then $\models \mathbb{R}, \Gamma \Rightarrow \Delta$, $x \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

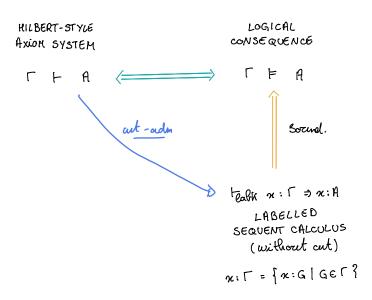
if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb{R}, \Gamma \Rightarrow \Delta$, $y \in \mathbb{R}$

if $\models x \in \mathbb$

Roadmap



Towards cut-admissibility of labK 1/2 [Negri, 2005]

Towards cut-admissibility of labK 1/2 [Negri, 2005]

Substitution on labelled formulas:

$$xRy[z/y] := xRz$$

 $y:A[z/y] := z:A$

Substitution on multisets of labelled formulas $\Gamma[z/y]$

Towards cut-admissibility of labK 1/2 [Negri, 2005]

Substitution on labelled formulas:

$$xRy[z/y] := xRz$$

 $y:A[z/y] := z:A$

Substitution on multisets of labelled formulas $\Gamma[z/y]$

Lemma (Substitution). Rule subst is hp-admissible in labK.

$$\frac{\mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}[y/x], \Gamma[y/x] \Rightarrow \Delta[y/x]}$$

Towards cut-admissibility of labK 1/2 [Negri, 2005]

Substitution on labelled formulas:

$$xRy[z/y] := xRz$$

 $y:A[z/y] := z:A$

Substitution on multisets of labelled formulas $\Gamma[z/y]$

Lemma (Substitution). Rule subst is hp-admissible in labK.

subst
$$\frac{\mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}[y/x], \Gamma[y/x] \Rightarrow \Delta[y/x]}$$

Lemma (Weakening). Rules wk_L , wk_R are hp-admissible (φ is xRy or x:A).

$$\label{eq:wkr} \begin{array}{ll} \underset{\varphi}{\mathcal{R},\Gamma\Rightarrow\Delta} & & \underset{\text{wkr}}{\mathcal{R},\Gamma\Rightarrow\Delta} \\ & \xrightarrow{\varphi},\mathcal{R},\Gamma\Rightarrow\Delta \end{array}$$

Towards cut-admissibility of labK 2/2 [Negri, 2005]

Lemma (Invertibility).

For every rule r, if the conclusion of r is derivable with a derivation of height h, then each of its premisses is derivable, with at most the same h.

Rules with variable condition:

If $R, \Gamma \Rightarrow \Delta, \kappa : \Box A$ is derivable (with derivation height at most n), then for every label $y \neq \kappa$ which does not occur in $R \cup \Gamma \cup \Delta$, we have that $\pi R y, R, \Gamma \Rightarrow \Delta, y : A$ is derivable (with derivation height at most n).

Lemma (Contraction). Rules ctr_L , ctr_R are hp-admissible (φ is xRy or x:A).

$$\operatorname{ctr_L} \frac{\varphi, \varphi, \mathcal{R}, \Gamma \Rightarrow \Delta}{\varphi, \mathcal{R}, \Gamma \Rightarrow \Delta} \qquad \operatorname{ctr_R} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, \psi, \psi}{\mathcal{R}, \Gamma \Rightarrow \Delta, \psi} \text{ a. A.}$$

Cut admissibility of labK [Negri, 2005]

Lemma (Cut). The cut rule is admissible.

$$\frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x: A \quad x: A, \mathcal{R}', \Gamma' \Rightarrow \Delta'}{\mathcal{R}, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$

Proof. By induction on $(c(A), h_1 + h_2)$.

Cut admissibility of labK [Negri, 2005]

Lemma (Cut). The cut rule is admissible.

$$\operatorname{cut} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \quad x : A, \mathcal{R}', \Gamma' \Rightarrow \Delta'}{\mathcal{R}, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$

Proof. By induction on $(c(A), h_1 + h_2)$.

$$\begin{array}{c|c}
\hline
xRy,\mathcal{R},\Gamma\Rightarrow\Delta,y:A \\
\hline
\mathcal{R},\Gamma\Rightarrow\Delta,x:\square A
\end{array}$$

$$\begin{array}{c|c}
xRz,\mathcal{R}',x:\square A,z:A,\Gamma'\Rightarrow\Delta' \\
\hline
xRz,\mathcal{R}',x:\square A,\Gamma'\Rightarrow\Delta'
\end{array}$$

$$\begin{array}{c|c}
\hline
\mathcal{R},xRz,\mathcal{R}',\Gamma,\Gamma'\Rightarrow\Delta,\Delta'$$

Cut admissibility of labK [Negri, 2005]

Lemma (Cut). The cut rule is admissible.

$$\frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x:A \quad x:A, \mathcal{R}', \Gamma' \Rightarrow \Delta'}{\mathcal{R}, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$

Proof. By induction on
$$(c(A), h_1 + h_2)$$
.

$$\begin{array}{c}
xRy, \mathcal{R}, \Gamma \Rightarrow \Delta, y:A \\
\text{cut} & xRz, \mathcal{R}', X:\Box A \cdot \Box A
\end{array}$$

$$\begin{array}{c}
xRz, \mathcal{R}', X:\Box A, \Gamma' \Rightarrow \Delta' \\
xRz, \mathcal{R}', X:\Box A, \Gamma' \Rightarrow \Delta'
\end{array}$$

$$\begin{array}{c}
xRz, \mathcal{R}', X:\Box A, \Gamma' \Rightarrow \Delta' \\
xRz, \mathcal{R}', X:\Box A, \Gamma' \Rightarrow \Delta'
\end{array}$$

$$\begin{array}{c}
xRz, \mathcal{R}', X:\Box A, \Gamma' \Rightarrow \Delta'
\end{array}$$

$$\begin{array}{c}
xRz, \mathcal{R}', X:\Box A, \Gamma' \Rightarrow \Delta'
\end{array}$$

$$\begin{array}{c}
xRz, \mathcal{R}', X:\Box A, \Gamma' \Rightarrow \Delta'
\end{array}$$

$$\begin{array}{c}
xRz, \mathcal{R}', X:\Box A, Z:A, \Gamma' \Rightarrow \Delta'
\end{array}$$

$$\begin{array}{c}
xRz, \mathcal{R}', X:\Box A, Z:A, \Gamma' \Rightarrow \Delta'
\end{array}$$

$$\begin{array}{c}
xRz, \mathcal{R}', X:\Box A, Z:A, \Gamma' \Rightarrow \Delta'
\end{array}$$

$$\begin{array}{c}
xRz, \mathcal{R}, \mathcal{R}', X:\Box A, Z:A, \Gamma' \Rightarrow \Delta'
\end{array}$$

$$\begin{array}{c}
xRz, \mathcal{R}, \mathcal{R}', Z:A, \Gamma, \Gamma' \Rightarrow \Delta, \Delta'
\end{array}$$

$$\begin{array}{c}
xRz, \mathcal{R}, \mathcal{R}', Z:A, \Gamma, \Gamma' \Rightarrow \Delta, \Delta'
\end{array}$$

$$\begin{array}{c}
xRz, \mathcal{R}, \mathcal{R}', Z:A, \Gamma, \Gamma' \Rightarrow \Delta, \Delta'
\end{array}$$

$$\begin{array}{c}
xRz, \mathcal{R}, \mathcal{R}', Z:A, \Gamma, \Gamma' \Rightarrow \Delta, \Delta'
\end{array}$$

Cut admissibility of labK [Negri, 2005]

Lemma (Cut). The cut rule is admissible.

$$\operatorname{cut} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A \quad x : A, \mathcal{R}', \Gamma' \Rightarrow \Delta'}{\mathcal{R}, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$

Proof. By induction on $(c(A), h_1 + h_2)$.

$$\frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta, y : A}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : \Box A} \xrightarrow{\Box_L} \frac{xRz, \mathcal{R}', x : \Box A, z : A, \Gamma' \Rightarrow \Delta'}{xRz, \mathcal{R}', x : \Box A, \Gamma' \Rightarrow \Delta'}$$

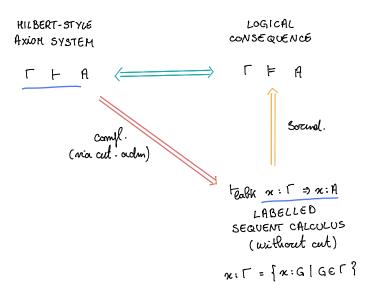
$$\frac{xRz, \mathcal{R}', x : \Box A, \Gamma' \Rightarrow \Delta'}{\mathcal{R}, xRz, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$

$$\text{cut} \frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x: \Box A \quad xRz, \mathcal{R}', x: \Box A, z: A, \Gamma' \Rightarrow \Delta'}{xRz, \mathcal{R}, \Gamma \Rightarrow \Delta, z: A} \frac{xRz, \mathcal{R}, \mathcal{R}', z: A, \Gamma, \Gamma' \Rightarrow \Delta'}{xRz, \mathcal{R}, \mathcal{R}', z: A, \Gamma, \Gamma' \Rightarrow \Delta, \Delta'} \frac{\mathcal{R}, \mathcal{R}, xRz, xRz, \mathcal{R}', \Gamma, \Gamma, \Gamma' \Rightarrow \Delta, \Delta, \Delta'}{\mathcal{R}, xRz, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$

For Γ set of formulas and $x:\Gamma = \{x:G \mid \text{ for each } G \in \Gamma\}$:

Theorem (Syntactic Completeness). If $\Gamma \vdash A$ then $\vdash_{labK} x:\Gamma \Rightarrow x:A$.

Roadmap



Frame conditions: a general recipe

Recap: modal logics in the S5-cube

Let $\mathcal{H}K = \mathcal{H}_{cp} \cup \{k, dual, nec\}$. Logic K is characterised by the class of all Kripke frames.

Name	Axiom	Frame condition			
(d)	$\Box A \rightarrow \Diamond A$	Seriality	∀x∃y(xRy)		
/ t	$\Box A \rightarrow A$	Reflexivity	∀x(xRx)		
b	$A \rightarrow \Box \Diamond A$	Symmetry	$\forall x \forall y (xRy \rightarrow yRx)$		
4 /	$\Box A \rightarrow \Box \Box A$	Transitivity	$\forall x \forall y \forall z ((xRy \land yRz) \rightarrow xRz)$		
5	$\Diamond A \to \Box \Diamond A$	Euclideaness	$\forall x \forall y \forall z ((xRy \land xRz) \rightarrow yRz)$		

Take $X \subseteq \{d, t, b, 4, 5\}$.

We write $\Gamma \vdash_X A$ iff A is derivable from Γ in the axiom system $\mathcal{H}K \cup X$.

We denote by X the class of frames satisfying properties in X.

We write $\Gamma \models_{\mathcal{X}} A$ iff A is logical consequence of Γ in the class of frames \mathcal{X} .

Theorem. For $X \subseteq \{d, t, b, 4, 5\}$, $\Gamma \vdash_X A$ iff $\Gamma \models_X A$.

Main ingredients

Name	Axiom	Frame condition		
d	$\Box A \rightarrow \Diamond A$	Seriality	$\forall x \exists y (xRy)$	
t	$\Box A \rightarrow A$	Reflexivity	∀x(xRx)	
b	$A \rightarrow \Box \Diamond A$	Symmetry	$\forall x \forall y (xRy \rightarrow yRx)$	
4	$\Box A \rightarrow \Box \Box A$	Transitivity	$\forall x \forall y \forall z ((xRy \land yRz) \rightarrow xRz)$	
5	$\Diamond A \to \Box \Diamond A$	Euclideaness	$\forall x \forall y \forall z ((xRy \land xRz) \rightarrow yRz)$	

Main ingredients

Name	Axiom	Frame condition		
d	$\Box A \rightarrow \Diamond A$	Seriality	$\forall x \exists y (xRy)$	
t	$\Box A \rightarrow A$	Reflexivity	$\forall x(xRx)$	
b	$A \rightarrow \Box \Diamond A$	Symmetry	$\forall x \forall y (xRy \rightarrow yRx)$	
4	$\Box A \rightarrow \Box \Box A$	Transitivity	$\forall x \forall y \forall z ((xRy \land yRz) \rightarrow xRz)$	
5	$\Diamond A \to \Box \Diamond A$	Euclideaness	$\forall x \forall y \forall z ((xRy \land xRz) \rightarrow yRz)$	

Frame conditions can be characterised by first-order logic formulas, in the language consisting of a single predicate symbol, R(x, y).

Main ingredients

Name	Axiom	Frame condition		
d	$\Box A \rightarrow \Diamond A$	Seriality	$\forall x \exists y (xRy)$	
t	$\Box A \rightarrow A$	Reflexivity	∀x(xRx)	
b	$A \rightarrow \Box \Diamond A$	Symmetry	$\forall x \forall y (xRy \rightarrow yRx)$	
4	$\Box A \rightarrow \Box \Box A$	Transitivity	$\forall x \forall y \forall z ((xRy \land yRz) \rightarrow xRz)$	
5	$\Diamond A \to \Box \Diamond A$	Euclideaness	$\forall x \forall y \forall z ((xRy \land xRz) \rightarrow yRz)$	

Frame conditions can be characterised by first-order logic formulas, in the language consisting of a single predicate symbol, R(x, y).

Proof systems for geometric theories, [Negri, 2003]:

"axioms-as-rules"

How to transform axioms of geometric theories (geometric implications) into rules, preserving the structural properties of the calculus.

Main ingredients

Name	Axiom	Frame condition	on
d	$\Box A \rightarrow \Diamond A$	Seriality	$\forall x \exists y (xRy)$
t	$\Box A \rightarrow A$	Reflexivity	$\forall x(xRx)$
b	$A \rightarrow \Box \Diamond A$	Symmetry	$\forall x \forall y (xRy \rightarrow yRx)$
4	$\Box A \to \Box \Box A$	Transitivity	$\forall x \forall y \forall z ((xRy \land yRz) \rightarrow xRz)$
5	$\Diamond A \to \Box \Diamond A$	Euclideaness	$\forall x \forall y \forall z ((xRy \land xRz) \rightarrow yRz)$

Frame conditions can be characterised by first-order logic formulas, in the language consisting of a single predicate symbol, R(x, y).

Proof systems for geometric theories, [Negri, 2003]:

"axioms-as-rules"

How to transform axioms of geometric theories (geometric implications) into rules, preserving the structural properties of the calculus.

The first-order logic formulas corresponding to the frame conditions above (and many more!) are geometric implications

Main ingredients (once more)

- 1. "axicms-as-rules" method [Mega; 2003] for FOL

 geometric axicms can be turned into request calculus

 rules
 (general method to define cut-free sequent calculi for

 geometric theories)
- 2. Frame conditions, read as FOI fermulas, are geometric axicms
- 3. We can define cut-free <u>labelled</u> sequent calculifus modal logics whose frame conditions can be expressed as geometric axicms [Megni, 2005]

First-order languages

First-order languages

A first-order signature is a tuple $\sigma = \langle c, d, \dots, f, g, \dots p, q, \dots \rangle$

- ▶ Constant symbols c, d, . . .
- ▶ Function symbols f, g, ..., each with arity > 0
- ▶ Predicate symbols p, q, ..., each with arity ≥ 0

First-order languages

A first-order signature is a tuple $\sigma = \langle c, d, \dots, f, g, \dots p, q, \dots \rangle$

- ▶ Constant symbols c, d, . . .
- ▶ Function symbols f, g, ..., each with arity > 0
- ▶ Predicate symbols p, q, ..., each with arity ≥ 0

A first-order language over a signature σ , denoted $\mathcal{L}(\sigma)$, consists of:

- ▶ The terms generated from a countably many variables x, y, ... using the constants and function symbols of σ ;
- ► The formulas generated from the terms of $\mathcal{L}(\sigma)$ and predicate symbols of σ using the operators \bot , \land , \lor , \rightarrow , \forall , \exists .

First-order languages

A first-order signature is a tuple $\sigma = \langle c, d, \dots, f, g, \dots p, q, \dots \rangle$

- ▶ Constant symbols c, d, . . .
- ▶ Function symbols f, g, ..., each with arity > 0
- ▶ Predicate symbols p, q, ..., each with arity ≥ 0

A first-order language over a signature σ , denoted $\mathcal{L}(\sigma)$, consists of:

- ▶ The terms generated from a countably many variables x, y, ... using the constants and function symbols of σ ;
- ▶ The formulas generated from the terms of $\mathcal{L}(\sigma)$ and predicate symbols of σ using the operators $\bot, \land, \lor, \rightarrow, \lor, \exists$.

A first-order language with equality over a signature σ , denoted $\mathcal{L}^{=}(\sigma)$, additionally comprises a binary predicate for equality.

First-order languages

A first-order signature is a tuple $\sigma = \langle c, d, \dots, f, g, \dots p, q, \dots \rangle$

- ▶ Constant symbols c, d, . . .
- ▶ Function symbols f, g, ..., each with arity > 0
- ▶ Predicate symbols p, q, ..., each with arity ≥ 0 ? Q

A first-order language over a signature σ , denoted $\mathcal{L}(\sigma)$, consists of:

- ▶ The terms generated from a countably many variables x, y, ... using the constants and function symbols of σ ;
- ▶ The formulas generated from the terms of $\mathcal{L}(\sigma)$ and predicate symbols of σ using the operators $\bot, \land, \lor, \rightarrow, \lor, \exists$.

A first-order language with equality over a signature σ , denoted $\mathcal{L}^{=}(\sigma)$, additionally comprises a binary predicate for equality.

Example.

 $\mathcal{L}^{=}(0, suc^{1}, +^{2}, \times^{2})$ is the language of arithmetic $\mathcal{L}(R^{2})$ is the language we use to express frame conditions

Geometric theories

Fix a first-order language $\mathcal{L}(\sigma)$ (with or without equality).

Geometric theories

Fix a first-order language $\mathcal{L}(\sigma)$ (with or without equality).

A first-order theory over $\mathcal{L}(\sigma)$ is a set of closed formulas of $\mathcal{L}(\sigma)$.

Example. Peano Arithmetic and Robinson Arithmetic are first-order theories over $\mathcal{L}^{=}(0, suc, +, \times)$.

Geometric theories

Fix a first-order language $\mathcal{L}(\sigma)$ (with or without equality).

A first-order theory over $\mathcal{L}(\sigma)$ is a set of closed formulas of $\mathcal{L}(\sigma)$.

Example. Peano Arithmetic and Robinson Arithmetic are first-order theories over $\mathcal{L}^{=}(0, suc, +, \times)$.

A geometric formula is a formula of $\mathcal{L}(\sigma)$ which does not contain \rightarrow or \forall .

Geometric theories

Fix a first-order language $\mathcal{L}(\sigma)$ (with or without equality).

A first-order theory over $\mathcal{L}(\sigma)$ is a set of closed formulas of $\mathcal{L}(\sigma)$.

Example. Peano Arithmetic and Robinson Arithmetic are first-order theories over $\mathcal{L}^{=}(0, suc, +, \times)$.

A geometric formula is a formula of $\mathcal{L}(\sigma)$ which does not contain \rightarrow or \forall .

A geometric implication is closed formula of $\mathcal{L}(\sigma)$ of the shape:

 $\forall \vec{x}(A \rightarrow B)$, for A, B geometric formulas

Geometric theories

Fix a first-order language $\mathcal{L}(\sigma)$ (with or without equality).

A first-order theory over $\mathcal{L}(\sigma)$ is a set of closed formulas of $\mathcal{L}(\sigma)$.

Example. Peano Arithmetic and Robinson Arithmetic are first-order theories over $\mathcal{L}^{=}(0, suc, +, \times)$.

A geometric formula is a formula of $\mathcal{L}(\sigma)$ which does not contain \rightarrow or \forall .

A geometric implication is closed formula of $\mathcal{L}(\sigma)$ of the shape:

$$\forall \vec{x}(A \rightarrow B)$$
, for A, B geometric formulas

A geometric theory over $\mathcal{L}(\sigma)$ is a first-order theory over $\mathcal{L}(\sigma)$ whose formulas are geometric implications.

Example: Peano Arithmetic and Robinson Arithmetic

From geometric axioms to rules [Negri, 2003]

Geometric implications can be expressed as conjunctions of geometric axioms, i.e., closed formulas of $\mathcal{L}(\sigma)$ having the form:

$$\forall \vec{x} \left(\stackrel{\wedge}{\stackrel{}_{P}} \rightarrow \left(\exists \vec{y}_{1}(Q_{1}) \vee \cdots \vee \exists \vec{y}_{m}(Q_{m}) \right) \right)$$

- \vec{x} , $\vec{y}_1, \dots, \vec{y}_m$ are (possibly empty, disjoint) vectors of variables;
- ▶ $m \ge 0$;
- $ightharpoonup P, Q_1, ..., Q_m$ are (possibly empty) conjunctions of atomic formulas of $\mathcal{L}(\sigma)$;
- $\vec{y}_1, \dots, \vec{y}_m$ do not occur in \vec{P} .

From geometric axioms to rules [Negri, 2003]

Geometric implications can be expressed as conjunctions of geometric axioms, i.e., closed formulas of $\mathcal{L}(\sigma)$ having the form:

- \vec{x} , $\vec{y}_1, \dots, \vec{y}_m$ are (possibly empty, disjoint) vectors of variables;
- ▶ $m \ge 0$;
- ▶ P, Q_1 ,..., Q_m are (possibly empty) conjunctions of atomic formulas of $\mathcal{L}(\sigma)$;
- $\vec{y}_1, \dots, \vec{y}_m$ do not occur in \vec{P} .

Geometric axioms can be turned into sequent calculus rules:

$$\underbrace{\Xi_{1}[\vec{z}_{1}/\vec{y}_{1}](\Pi,\Gamma\Rightarrow\Delta)}_{\Pi,\Gamma\Rightarrow\Delta}\cdots\underbrace{\Xi_{m}[\vec{z}_{m}/\vec{y}_{m}](\Pi,\Gamma\Rightarrow\Delta)}_{\Pi,\Gamma\Rightarrow\Delta}$$

- $ightharpoonup \Pi$ is the multiset of atomic formulas in P;
- ▶ Ξ_i is the multiset of atomic formulas in Q_i , for each $i \leq m$;
- ▶ $\vec{\underline{z}}_1, \dots, \vec{z}_m$ do not occur in $\Gamma \cup \Delta$.

From geometric axioms to labelled rules [Negri, 2003]

Geometric implications can be expressed as conjunctions of geometric axioms, i.e., closed formulas of $\mathcal{L}(\sigma)$ having the form:

$$\forall \vec{x} \left(P \rightarrow \left(\exists \vec{y}_1(Q_1) \lor \cdots \lor \exists \vec{y}_m(Q_m) \right) \right)$$

- \vec{x} , $\vec{y}_1, \dots, \vec{y}_m$ are (possibly empty, disjoint) vectors of variables;
- ▶ P, Q_1, \ldots, Q_m are (possibly empty) conjunctions of atomic formulas of $\mathcal{L}(\sigma)$; $\mathcal{L}(\mathbf{R})$
- $\vec{y}_1, \dots, \vec{y}_m$ do not occur in \vec{P} .

Geometric axioms can be turned into sequent calculus rules:

$$GA = \frac{\begin{array}{c} \chi & R \downarrow & \dots \\ \Xi_{1}[\vec{z}_{1}/\vec{y}_{1}], \Pi, \Gamma \Rightarrow \Delta & \dots & \Xi_{m}[\vec{z}_{m}/\vec{y}_{m}], \Pi, \Gamma \Rightarrow \Delta \\ \hline \Pi, \Gamma \Rightarrow \Delta \\ \chi & R \downarrow \end{array}}$$

- ▶ П is the multiset of atomic formulas in P;
- $\triangleright \stackrel{=}{\Xi_i}$ is the multiset of atomic formulas in Q_i , for each $i \le m$;
- $ightharpoonup \vec{z}_1, \dots, \vec{z}_m$ do not occur in $\Gamma \cup \Delta$.

Examples

$$\forall \vec{x} \left(P \to \left(\exists \vec{y}_{1}(Q_{1}) \vee \cdots \vee \exists \vec{y}_{m}(Q_{m}) \right) \right)$$

$$GA = \frac{\Xi_{1}[\vec{z}_{1}/\vec{y}_{1}], \Pi, \mathcal{R}, \Gamma \Rightarrow \Delta}{\Pi, \mathcal{R}, \Gamma \Rightarrow \Delta}$$

$$\forall x \forall y \forall z \left((x Ry \land y Rz) \to x Rz \right)$$

$$\Rightarrow Ry, y Rz, R, \Gamma \Rightarrow \Delta$$

$$\Rightarrow Ry, y Rz, R, \Gamma \Rightarrow \Delta$$

Examples

Labelled calculi for the S5-cube [Negri, 2005]

$$\begin{split} \operatorname{ser} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} \, _{y \, \operatorname{fresh}} \quad & \operatorname{ref} \frac{xRx, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} \quad \operatorname{sym} \frac{yRx, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta} \\ & \operatorname{tr} \frac{xRz, xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta} \quad & \operatorname{euc} \frac{yRz, xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta} \end{split}$$

Labelled calculi for the S5-cube [Negri, 2005]

$$\frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta}_{y \text{ fresh}} \quad \text{ref} \frac{xRx, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} \quad \text{sym} \frac{yRx, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}$$

$$\text{tr} \frac{xRz, xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta} \quad \text{euc} \frac{yRz, xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta}$$

For $X \subseteq \{d, t, b, 4, 5\}$, labK \cup X is defined by adding to labK the rules for frame conditions corresponding to elements of X plus the rules obtained to satisfy the closure condition (contracted instances of the rules):

$$\operatorname{euc} \frac{yRy, xRy, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta} \quad \rightsquigarrow \quad \operatorname{euc'} \frac{yRy, xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta} \qquad \Big)$$

Example: labK \cup {5} denotes the proof system labK \cup {euc, euc'}.

We denote by $\vdash_{labK \cup X} S$ derivability of labelled sequent S in labK $\cup X$.

Soundness and completeness of labK ∪ X [Negri, 2005]

For $X \subseteq \{d, t, b, 4, 5\}$:

Theorem (Soundness). If $\vdash_{labK \cup X} \mathcal{R}, \Gamma \Rightarrow \Delta$ then $\models_{\mathcal{X}} \mathcal{R}, \Gamma \Rightarrow \Delta$.

Example. If the premiss of rule ser is valid in all serial models, then its conclusion is valid in all serial models.

$$\operatorname{ser} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathcal{R}, \Gamma \Rightarrow \Delta} y \operatorname{fresh}$$

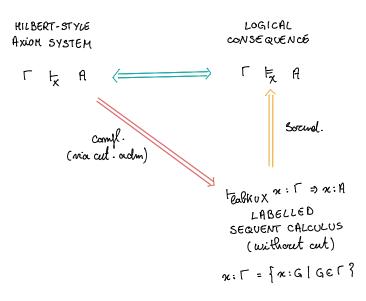
Lemma (Cut). The cut rule is admissible in labK \cup X:

$$\frac{\mathcal{R}, \Gamma \Rightarrow \Delta, x: A \quad x: A, \mathcal{R}', \Gamma' \Rightarrow \Delta'}{\mathcal{R}, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$

For Γ set of formulas and $x:\Gamma = \{x:G \mid \text{ for each } G \in \Gamma\}$:

Theorem (Syntactic Completeness). If $\Gamma \vdash_{K \cup X} A$ then $\vdash_{labK \cup X} x:\Gamma \Rightarrow x:A$.

Roadmap



Summing up

	fml. interpr.	invertible rules	analyti- city	termination proof search	counterm. constr.	modu- larity
G3cp	yes	yes	yes	yes, easy!	yes, easy!	n/a
G3K	yes	no	yes	yes, easy!	yes, not easy	no
NK ∪ X [◊]	yes	yes	yes	?	?	45-clause
labK ∪ <i>X</i>	no	yes	yes	?	?	yes
	ranantic completeness					n

Beyond geometric axioms

Beyond geometric axioms

Systems of rules [Negri, 2016], to capture theories / logics characterized by generalized geometric implications:

$$GA_{0} = \forall \vec{x} \left(P \to \left(\exists \vec{y}_{1}(Q_{1}) \lor \cdots \lor \exists \vec{y}_{m}(Q_{m}) \right) \right)$$

$$GA_{1} = \forall \vec{x} \left(P \to \left(\exists \vec{y}_{1}(\bigwedge GA_{0}) \lor \cdots \lor \exists \vec{y}_{m}(\bigwedge GA_{0}) \right) \right)$$

$$GA_{n+1} = \forall \vec{x} \left(P \to \left(\exists \vec{y}_{1}(\bigwedge GA_{k_{1}}) \lor \cdots \lor \exists \vec{y}_{m}(\bigwedge GA_{k_{m}}) \right) \right)$$
for $k_{1}, \ldots, k_{m} \ge n$

Beyond geometric axioms

Systems of rules [Negri, 2016], to capture theories / logics characterized by generalized geometric implications:

$$GA_{0} = \forall \vec{x} \left(P \to \left(\exists \vec{y}_{1}(Q_{1}) \lor \cdots \lor \exists \vec{y}_{m}(Q_{m}) \right) \right)$$

$$GA_{1} = \forall \vec{x} \left(P \to \left(\exists \vec{y}_{1}(\bigwedge GA_{0}) \lor \cdots \lor \exists \vec{y}_{m}(\bigwedge GA_{0}) \right) \right)$$

$$GA_{n+1} = \forall \vec{x} \left(P \to \left(\exists \vec{y}_{1}(\bigwedge GA_{k_{1}}) \lor \cdots \lor \exists \vec{y}_{m}(\bigwedge GA_{k_{m}}) \right) \right)$$

for
$$k_1, \ldots, k_m \geq n$$

Systems of rules cover all systems of normal modal logics axiomatised by Sahlqvist formulas.

Beyond geometric axioms

Systems of rules [Negri, 2016], to capture theories / logics characterized by generalized geometric implications:

$$GA_{0} = \forall \vec{x} \left(P \to \left(\exists \vec{y}_{1}(Q_{1}) \lor \cdots \lor \exists \vec{y}_{m}(Q_{m}) \right) \right)$$

$$GA_{1} = \forall \vec{x} \left(P \to \left(\exists \vec{y}_{1}(\bigwedge GA_{0}) \lor \cdots \lor \exists \vec{y}_{m}(\bigwedge GA_{0}) \right) \right)$$

$$GA_{n+1} = \forall \vec{x} \left(P \to \left(\exists \vec{y}_{1}(\bigwedge GA_{k_{1}}) \lor \cdots \lor \exists \vec{y}_{m}(\bigwedge GA_{k_{m}}) \right) \right)$$

for
$$k_1, \ldots, k_m \geq n$$

Systems of rules cover all systems of normal modal logics axiomatised by Sahlqvist formulas.

- ▶ Gödel-Löb provability logic (GL): [megai, 2005]
 - ▶ Transitivity: R is transitive
 - Converse well-foundedness: there are no infinite R-chains

Beyond geometric axioms

Systems of rules [Negri, 2016], to capture theories / logics characterized by generalized geometric implications:

$$\begin{split} GA_0 &= \forall \vec{x} \left(\stackrel{P}{\rightarrow} \left(\exists \vec{y}_1(Q_1) \lor \cdots \lor \exists \vec{y}_m(Q_m) \right) \right) \\ GA_1 &= \forall \vec{x} \left(\stackrel{P}{\rightarrow} \left(\exists \vec{y}_1(\bigwedge GA_0) \lor \cdots \lor \exists \vec{y}_m(\bigwedge GA_0) \right) \right) \\ GA_{n+1} &= \forall \vec{x} \left(\stackrel{P}{\rightarrow} \left(\exists \vec{y}_1(\bigwedge GA_{k_1}) \lor \cdots \lor \exists \vec{y}_m(\bigwedge GA_{k_m}) \right) \right) \end{split}$$

for
$$k_1, \ldots, k_m \geq n$$

Systems of rules cover all systems of normal modal logics axiomatised by Sahlqvist formulas.

- Gödel-Löb provability logic (GL):
 - ▶ Transitivity: R is transitive
 - Converse well-foundedness: there are no infinite R-chains

[Negri, 2005]: labelled proof system for GL!

Exercises

$$d \square A \rightarrow \Diamond A$$

$$t \square A \rightarrow A$$

b
$$A \rightarrow \Box \Diamond A$$

4
$$\Box A \rightarrow \Box \Box A$$

$$5 \diamondsuit A \rightarrow \Box \diamondsuit A$$

- 1. For $X \in \{d, t, b, 4, 5\}$, show that the axiom X is derivable in the labelled sequent calculus labK $\cup X$.
- Show that the rules ref, tr, sym, ser, euc are sound in the corresponding class of frames
- 3. Write down the sequent calculus rules corresponding to the axioms of Robinson Arithmetic. These rules are to be added to the sequent calculus for first-order logic with equalitity, where one can show that cut is eliminable. Can we use the results from [Negri, 2003] to prove consistency of Robinson Arithmetic? If yes, how?