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Today’s lecture: Labelled Proof Systems

> Labelled sequent calculus for K
> Frame conditions: a general recipe



The labelled approach in the literature

References (non-exhaustive):

> Spotted formulas for S5

> , Tableaux + labels

> , Natural deduction + labels

> , , Sequent calculus + labels

We follow the approach of Negri:
> Proof analysis in modal logics

> Contraction-free sequent calculi for geometric theories with an
application to Barr’s theorem



Labelled sequent calculus for K
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Enriching the language

AB:=p|L|AAB|AVB|A—B|DA|GA

Take countably many variables x, y, z, ... (the lables)

Labelled formulas

> XRy meaning ‘x has access to y’
> X:A meaning ‘x satisfies A’

(relational atoms)

e, Thio 40 met
Labelled sequent -
({—‘(ﬁ%{) 0\ - colerlus
RIM=A x:f
where

> R is a multiset of relational atoms;

> [, A are multisets of labelled formulas without relational atoms.

Labelled sequents lack a formula interpretation
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Rules of labK

init

R, x:p,I = A, x:p

R, XA, x:B,T = A
MR XANB.T = A

RxAT=A RxBIl=A
R,x:AVB, T = A

VL

RIT=>AXxA RxBIT=A

—L
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0
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init

R, x:p,I = A, x:p

R, XA, x:B,T = A
MR XANB.T = A

RxAT=A RxBIl=A
R,x:AVB, T = A

VL

RIT=>AXxA RxBIT=A

—L

R x:A— B, = A

xRy, R, y:A,x:0A, I = A
0
xRy, R, x:0A, = A

xRy, R, y:A, T = A
R, x:OA, T = A

y fresh

I
Rx: L, = A

RIMT=>AXxA RTI=AXxB
RI=>AXAANB

AL

R, = A, x:A, x:B

\
"R = A, xAVB
XART = A xB
_)HR,F = A x:A—-B

XRy,R,T = A, y:A
R = A, x:OA

y fresh

XRy,R,T = A, x:0A,y:A
xRy, R, = A, x:0A

y fresh means y # x and y does not occurin RUT U A



Provability in labK

We write Figpk R, T = A if there is a derivation of R, = A in labK.
Example: Fapk= x:(Op — 0q) —» 0(p — q)

m: XRy,y:p = y:q,x:0p, y:p :r xRy, x:0q,y:q,y:p = y:q
XRy,y:A = y:q,x:0p xRy, x:0q,y:p = y:q

o XRy,x:0p — 0q,y:p = y:q

) xRy, x:0p - 09 = y:p—q

i x:0p —» 0g = x:0(p — q)

"> x:(0p—0q) - o(p— q)

—

[m}

-
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Validity of sequents

Given asequent S =R,I = A, and a model M = (W, R, v), let
Lb(S) ={x|xe RUTUA},and p:Lb(S) —» W (interpretation).
Satisfiability of labelled formulas at M under p :

M.p xRy iff  p(x)Rp(y)
M,p - x:A iff M,p(x) - A

Satisfiability of sequents at M under p (¢ is xRy or x:A):
MprR T = A ff

if forallp e RUT itholds that M,p I ¢,
then for some x:D € A it holds that M, p I x:D.

A sequent R, = A has a countermodel iff there are M, p such that:
> M,pE g, forallg e RUT, and
> M,p tE x:D, for all x:D € A.
Validity of sequents in a class of frames X :
ExRI=A iff foranypandany Me X, M,pr R, = A



Soundness of labK [Negri, 2009]

Theorem (Soundness). If Fapx R IT= A then E R = A
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Towards cut-admissibility of labK 1/2 [Negri, 2005]
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Towards cut-admissibility of labK 1/2

Substitution on labelled formulas:
xRy[z/y] = xRz
y:Alzlyl = ZA
Substitution on multisets of labelled formulas [[z/y]

Lemma (Substitution). Rule subst is hp-admissible in labK.

» RT = A
Rly/x],Tly/x] = Aly/x]

Lemma (Weakening). Rules wk, wkg are hp-admissible (¢ is xRy or x:A).

RI=A RIMT=A
kLi Wkﬂi
o, RTT=A RI= A

W



Towards cut-admissibility of labK 2/2

Lemma (Invertibility).
For every rule r, if the conclusion of r is derivable with a derivation of height
h, then each of its premisses is derivable, with at most the same h.
RU.QM wilh noucalle cemaliHem:
20 RCoA xiOh i olscelle
xRy, R, T4, gl Oe  (with dewoekion & cd% ot O GM)/
Q’\’zyA’%:Dﬂ t Qom g% W&@e@g%xw c
oty meb ocawsn, im Roulul, we Pawe

tQek %RS'@" r=>A,g-. A o{,eocuuc@)&
(witR lepiuediom e\&'f‘de‘é ok mot m ).

Lemma (Contraction). Rules ctr, ctrg are hp-admissible (¢ is xRy or x:A).

0,0, R T = A RT = A0,¢0
ctr — ctrg —mm8@™MM

o, R TT=>A R,IT=A¢



Cut admissibility of labK

Lemma (Cut). The cut rule is admissible.
RT=AXxA xAR, "= A

cut

RR,[,["=> AN

Proof. By induction on (¢(A), hy + hy) .



Cut admissibility of labK

Lemma (Cut). The cut rule is admissible.
RT=AXxA xAR, "= A

cut

RR, [T = AN
Proof. By induction on (¢(A), hy + hy) .

xRy,R, I = A,y:A xRz, R, x:0A,z.A,T" = A’
R = A, x:O0A - xRz, R, x:0A, " = A/
R, xRz, R, [, " = A, A’

cut




Cut admissibility of labK

Lemma (Cut). The cut rule is admissible.
RT=AXxA xAR, "= A
RR,T,["=> AN

cut

Proof. By induction on (¢(A), hy + hy) .

xRy,R, I = A,y:A xRz, R, x:0A,z.A,T" = A’
R = A, x:O0A - xRz, R, x:0A, " = A/
R, xRz, R, [, " = A, A’
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R, = A, x:0A xRz,R,x:0A,zA, "= A’
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Cut admissibility of labK

Lemma (Cut). The cut rule is admissible.
RT=AXxA xAR, "= A
RR,T,["=> AN

cut

Proof. By induction on (¢(A), hy + hy) .

xRy,R, I = A,y:A xRz, R, x:0A,z.A,T" = A’
R = A, x:O0A - xRz, R, x:0A, " = A/
R, xRz, R, [, " = A, A’

cut

R, = A, x:0A xRz,R,x:0A,zA, "= A’
cut

xRz, R, = A, z:A xRz, R, R,z A, I,[" = A, A
R, R, xRz, xRz, R,[,[," = A, A, A
R, xRz, R,I,T" = A, A’

cut

ctr,ctrg

For I' set of formulas and x:[" = {x:G | foreach G € I'}:

Theorem (Syntactic Completeness). If T+ A then rgk x:I = x:A.
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Frame conditions: a general recipe




Recap: modal logics in the S5-cube

Let HK = Hqp U {k, dual, nec}. Logic K is characterised by the class of all
Kripke frames.

Name Axiom Frame condition
d 0A - OA Seriality VYx3y(xRy)
t DA—-A Reflexivity Vx(xRXx)
b A - O0A Symmetry V¥xVy(xRy — yRx)
4 OA - Oo0A | Transitivity VxYy¥z((xRy A yRz) — xRz)
5 OA —» O0A | Euclideaness VYxVyVz((xRy A xRz) — yRz)

Take X € {d,t,b, 4,5}.

We write I +x A iff A is derivable from I in the axiom system HK U X.

We denote by X the class of frames satisfying properties in X.

We write [ =x A iff A is logical consequence of I in the class of frames

X.

Theorem. For X C {d,t,b,4,5}, T +x A iff [ =x A.
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Main ingredients

Name Axiom Frame condition
d 0A — OA Seriality VYx3y(xRy)
t DA—-A Reflexivity VYx(xRx)
b A - O0A Symmetry VYxYy(xRy — yRx)
4 OA - OoA | Transitivity VxYyV¥z((xRy A yRz) — xRz)
5 OA —» OCA | Euclideaness VYxVyVz((xRy A xRz) — yRz)

Frame conditions can be characterised by first-order logic formulas, in

the language consisting of a single predicate symbol, R(x, y).

Proof systems for geometric theories,

How to transform axioms of geometric theories (geometric implications)

“axioms-as-rules”

into rules, preserving the structural properties of the calculus.

The first-order logic formulas corresponding to the frame conditions above

(and many more!) are geometric implications



Main ingredients (omce mine)
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First-order languages

A first-order signature is a tuple o = (¢, d,...,f,g,...p,q,...)
> Constant symbols ¢, d, ...
> Function symbols f, g,. .., each with arity > 0
> Predicate symbols p, q, ..., each with arity > 0

A first-order language over a signature o-, denoted £(o), consists of:

> The terms generated from a countably many variables x, y, ... using
the constants and function symbols of o;

> The formulas generated from the terms of £(o") and predicate
symbols of o using the operators L, A, Vv, —,V, 3.

A first-order language with equality over a signature o-, denoted £L=(o),
additionally comprises a binary predicate for equality.

Example.
L7(0,suc’, +2, x2) is the language of arithmetic

£L(R?) is the language we use to express frame conditions
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Geometric theories

Fix a first-order language £(o") (with or without equality).

A first-order theory over L(c) is a set of closed formulas of £(o).

Example. Peano Arithmetic and Robinson Arithmetic are first-order
theories over £=(0, suc, +, x).

A geometric formula is a formula of £(o") which does not contain — or V.

A geometric implication is closed formula of £(o") of the shape:

VX(A — B), for A, B geometric formulas

A geometric theory over L(o) is a first-order theory over £(o") whose
formulas are geometric implications.



Example: Peano Arithmetic and Robinson Arithmetic

£7(0, suc, +, x)

Axiomatisation of first-order logic with equality, plus:

VxVy(x x suc(y) = (x X y) + x)
x =0V dy(x = suc(y))

1 Vx(0 # suc(x))

2 VxVy(suc(x) =suc(y) - x=y)
3 V¥x(x+0=x)

4 VYxVYy(x + suc(y) = suc(x +y))
5 V¥x(xx0=0)

6

7

Ind(A) (A(0) A Vx(A(x) — A(sucx))) — VxA(x)

Peamo Anitlametic + RAN $23 U Smol(4)

for any A(x)



From geometric axioms to rules

Geometric implications can be expressed as conjunctions of geometric
axioms, i.e., closed formulas of £(o") having the form:

V)?(P = (@) V-V 37m(om)))

X, V1....,Ym are (possibly empty, disjoint) vectors of variables;

> m>0;

P, Q4,...,Qn are (possibly empty) conjunctions of atomic formulas
of L(o);

V1, ..., ¥m do not occur in P.

v

v

v



From geometric axioms to rules

Geometric implications can be expressed as conjunctions of geometric
axioms, i.e., closed formulas of £(o") having the form:

V)?(P = (@) V-V 37m(om)))

> X, V1,...,Ym are (possibly empty, disjoint) vectors of variables;

> m>0;

> P, Q,...,Qn are (possibly empty) conjunctions of atomic formulas
of L(o);

> V1,...,¥Ym do not occur in P.

Geometric axioms can be turned into sequent calculus rules:

GAE1[Z1/71],H,F:> A - ZhZn/Ym], 0T = A
Mnr=A

> [1is the multiset of atomic formulas in P;
> =, is the multiset of atomic formulas in Q;, for each i < m;
> 21,...,Zm do notoccurin T U A.



From geometric axioms to labelled rules

Geometric implications can be expressed as conjunctions of geometric
axioms, i.e., closed formulas of £{o") having the form:
L(R)
V)?(P = (@) V-V 37m(om)))

> X, V1,...,Ym are (possibly empty, disjoint) vectors of variables;
> m>0;

> P, Q,...,Qn are (possibly empty) conjunctions of atomic formulas

ofﬂrﬂ; L(R)

> V1,...,¥Ym do not occur in P.
Geometric axioms can be turned into sequent calculus rules:

GAE1[Z1/71],H,F:> A - ZhZn/Ym], 0T = A
Mnr=A

> [1is the multiset of atomic formulas in P;
> =, is the multiset of atomic formulas in Q;, for each i < m;
> 21,...,Zm do notoccurin T U A.
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Labelled calculi for the S5-cube

xRy, R, = A xBx,R, = A yRx,xRy,R,T = A
ser —————  y fresh ref

R = A Rr=>4A " XRy.RT=A

xRz, xRy,yRz,R, = A yRz,xRy,xRz,R, = A
t
r xRy,yRz,R,T = A e xRy,xRz,R,T = A
For X C {d,t,b, 4,5}, labK U X is defined by adding to labK the rules for

frame conditions corresponding to elements of X, plus the rules obtained
to satisfy the closure condition (contracted instances of the rules):

yRy, xRy, xRy, R, = A yRy,xRy,R,T = A
~ ,
° xRy, xRy, R, = A e xRy, R, = A

eu

Example: labK U {5} denotes the proof system labK U {euc, euc’}.

We denote by Fgpkux S derivability of labelled sequent S in labK U X.



Soundness and completeness of labK U X

For X C {d,t,b, 4,5}:

Theorem (Soundness). If Fgpkux R, = Athen=x R, = A.

Example. If the premiss of rule ser is valid in all serial models, then its
conclusion is valid in all serial models.

xRy,R,T = A
ser ——————— y fresh

RI=A

Lemma (Cut). The cut rule is admissible in labK U X:

RI=AXxA xXAR, "= A
RR,[T"= AN

cut

For I set of formulas and x:[" = {x:G | foreach G € '}:

Theorem (Syntactic Completeness). If I Fxux A then Figpkux X:I = Xx:A.



Roadmap
Xe

s, b, &L 53
RILBERT-5TYLE LoGlcAL
AxioH 5YSTEM CoNSE QUEN B
C e A< > T &R
l__&x@“ux o \ D % n
LABRGLLED
SEQUENT CRLCOLLS
(w,«')c?wu}(? uA}C)

S PRI



Summing up

fml. invertible | analyti- | termination counterm. modu-
interpr. rules city proof search constr. larity
G3cp yes yes yes yes, easy! yes, easy! n/a
G3K yes no yes yes, easy! yes, not easy no
NK U X® yes yes yes ? ? 45-clause
labK U X ‘ no yes yes ? ? yes
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Beyond geometric axioms

> Systems of rules , to capture theories / logics
characterized by generalized geometric implications:

GA, = \/)?(P S (3 (@) Vv 3ym(om)))
GA; = V)?(P = (37 /\ GAo) v+ v Fm( \ GAO)))
GAnyy = v)?(P = (371 /\ GA) V-V Im( N GAkm)))

forky,...,km>n



Beyond geometric axioms

> Systems of rules , to capture theories / logics
characterized by generalized geometric implications:
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forky,...,km=n

Systems of rules cover all systems of normal modal logics
axiomatised by Sahlqvist formulas.
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axiomatised by Sahlqvist formulas.
> GoOdel-Lob provability logic (GL):
> Transitivity: R is transitive
> Converse well-foundedness: there are no infinite R-chains



Beyond geometric axioms

> Systems of rules , to capture theories / logics
characterized by generalized geometric implications:

GA, = \/)?(P S (3 (@) Vv 3ym(om)))
GA; = V)?(P = (37 /\ GAo) v+ v Fm( \ GAO)))
GAnyy = v)?(P = (371 /\ GA) V-V Im( N GAkm)))

forky,...,km>n

Systems of rules cover all systems of normal modal logics
axiomatised by Sahlqvist formulas.
> GoOdel-Lob provability logic (GL):
> Transitivity: R is transitive
> Converse well-foundedness: there are no infinite R-chains

: labelled proof system for GL!



Exercises

1.

d DA->0CA

t DA-A

b A—-DO0A
4 DA - ODA
5 CA-O0A

For X € {d,,b, 4, 5}, show that the axiom X is derivable in the labelled
sequent calculus labK U X.

. Show that the rules ref, tr, sym, ser, euc are sound in the corresponding

class of frames.

Write down the sequent calculus rules corresponding to the axioms of
Robinson Arithmetic. These rules are to be added to the sequent calculus
for first-order logic with equalitity, where one can show that cut is eliminable.
Can we use the results from to prove consistency of Robinson
Arithmetic? If yes, how?



