# Proof Theory of Modal Logic

Lecture 2 Nested Sequents



Marianna Girlando

ILLC, Universtiy of Amsterdam

5th Tsinghua Logic Summer School Beijing, 14 - 18 July 2025

#### Recap

Derivable reule vs. admissible reules

Sc : request calculer (set of rules)

R is derivable: there is a derivation of c
from the premisses Ps,.., Pm in Sc

R is admissible: if the fremisses P1,.., Pn are derivable, then the conclusion c is derivable in Sc.



Derivable reule vs. admissible reules

R P1 .. Pm

Sc : request calculer (set of rules)

R is derivable: there is a derivation of c from the premisses Ps,.., Pm in Sc

Example: Rube 13 derivable in G3ch

$$\frac{(A,B,C,\Gamma\Rightarrow\Delta)}{A\wedge B,C,\Gamma\Rightarrow\Delta} \wedge L$$

$$\frac{(A\wedge B)\wedge C,\Gamma\Rightarrow\Delta}{(A\wedge B)\wedge C,\Gamma\Rightarrow\Delta}$$

$$\begin{array}{c}
A, B, C, \Gamma \Rightarrow \Delta \\
\hline
(A \land B) \land C, \Gamma \Rightarrow \Delta
\end{array}$$

$$\begin{array}{c}
A \\
(A \land B) \land C, \Gamma \Rightarrow \Delta
\end{array}$$



Derivable reell vs. admissible reells

R P1 .. Pm

Sc : request calculer (set of rules) R is derivable: there is a derivation of c
from the premisses Ps,.., Pr in sc

Example: Rule 13 derivable in G3ch  $\frac{A,B,C,\Gamma \ni \Delta}{(A \land B) \land C,\Gamma \ni \Delta} \land 3$ 

 $\frac{A,B,C,\Gamma\Rightarrow\Delta}{A\wedge B,C,\Gamma\Rightarrow\Delta} \wedge_{L}$   $\frac{A\wedge B,C,\Gamma\Rightarrow\Delta}{(A\wedge B)\wedge C,\Gamma\Rightarrow\Delta}$ 

R is admissible: if the fremisses P1,.., Pn are derivable, then
the conclusion c is derivable in Sc.

Example:  $WK_L$  derivable in G3 ch  $\frac{\Gamma = \Delta}{A, \Gamma = \Delta}WK_L$  if  $\Gamma = \Delta$  then  $A, \Gamma = \Delta$ 

Recap

Consistency of PA (Peans Anithmetic)

- > Language of arithmetic {0, s, +, x}
- PA is a set of axioms and inference rules (FAA)

  FOL = + { \forall \nabla \kappa (0 \neq 5(\in)) \\ \forall \nabla \kappa \tag{+ induction rule}
- Define a request calculus sound and complete w.r.t. PA
- o Prove cut elimination for SC
- Dobserve that cut-free proof are analytic: every famule accurring in them is a subformula of formulas in the conclusion
- By cut-elimination,  $t_{sc} \setminus fad = 1$ . Then, by completeness,  $t_{sc} = 1$ .

#### Summing up

|      | fml.<br>interpr. | invertible<br>rules | analyti-<br>city | termination proof search | counterm.<br>constr. | modu-<br>larity |
|------|------------------|---------------------|------------------|--------------------------|----------------------|-----------------|
| G3cp | yes              | yes                 | yes              | yes, easy!               | yes, easy!           | n/a             |
| G3K  | yes              | no                  | yes              | yes, easy!               | yes, not easy        | no              |

Today's lecture: Nested Sequents

- Nested sequents for K
- Nested sequents for the S5-cube

### Nested sequents for K



#### Nested sequents in the literature

#### Independently introduced in:

- ▶ [Bull, 1992]; [Kashima, 1994] *→ nested sequents*
- ▶ [Brünnler, 2006], [Brünnler, 2009] *→ deep sequents*

#### Main references for this lecture:

- ▶ [Lellmann & Poggiolesi, 2022 (arXiv)]
- ► [Brünnler, 2009], [Brünnler, 2010 (arXiv)]
- ▶ [Marin & Straßburger, 2014]

Sequent 
$$(\Gamma \Rightarrow \Delta) = (\Gamma \Rightarrow \nabla / \Gamma, \Delta)$$
 multisets of formulas

One-sided sequents

Sequent (r) > 2

One-sided sequent /// Γ

 $\Gamma$ ,  $\Delta$  multisets of formulas  $\Gamma$  multiset of formulas

$$\begin{array}{lll} \mbox{Sequent} & \Gamma \Rightarrow \Delta & \Gamma, \Delta \mbox{ multisets of formulas} \\ \mbox{One-sided sequent} & \Gamma & \Gamma \mbox{ multiset of formulas} \end{array}$$

$$A, B ::= p |\overline{p}| A \wedge B | A \vee B$$

$$\begin{array}{lll} \mbox{Sequent} & \Gamma \Rightarrow \Delta & \Gamma, \Delta \mbox{ multisets of formulas} \\ \mbox{One-sided sequent} & \Gamma & \Gamma \mbox{ multiset of formulas} \end{array}$$

$$A, B ::= p \mid \overline{p} \mid A \land B \mid A \lor B$$

$$\overline{A \wedge B} := \overline{A} \vee \overline{B} \qquad \overline{A \vee B} := \overline{A} \wedge \overline{B}$$

$$\begin{array}{lll} \text{Sequent} & \Gamma \Rightarrow \Delta & \Gamma, \Delta \text{ multisets of formulas} \\ \text{One-sided sequent} & \Gamma & \Gamma \text{ multiset of formulas} \end{array}$$

$$A, B ::= p \mid \overline{p} \mid A \land B \mid A \lor B$$

$$\overline{A \wedge B} := \overline{A} \vee \overline{B}$$
  $\overline{A \vee B} := \overline{A} \wedge \overline{B}$ 

$$A \to B := \overline{A} \vee B \qquad \bot := p \wedge \overline{p}$$

#### One-sided sequents

$$\begin{array}{lll} \text{Sequent} & \Gamma \Rightarrow \Delta & \Gamma, \Delta \text{ multisets of formulas} \\ \\ \text{One-sided sequent} & \Gamma & \Gamma \text{ multiset of formulas} \\ \end{array}$$

$$A,B ::= p \mid \overline{p} \mid A \wedge B \mid A \vee B$$

$$\overline{A \wedge B} := \overline{A} \vee \overline{B}$$
  $\overline{A \vee B} := \overline{A} \wedge \overline{B}$   
 $A \to B := \overline{A} \vee B$   $\bot := p \wedge \overline{p}$ 

Rules of G3cpone

$$\operatorname{init} \frac{\Gamma, \rho, \overline{\rho}}{\Gamma, A \wedge \overline{B}} \qquad ^{\wedge} \frac{\Gamma, A \quad \Gamma, B}{\Gamma, A \wedge B} \qquad ^{\vee} \frac{\Gamma, A, B}{\Gamma, A \vee B}$$

#### One-sided sequents

$$\begin{array}{cccc} \text{Sequent} & \Gamma \Rightarrow \Delta & \Gamma, \Delta \text{ multisets of formulas} \\ \\ \text{One-sided sequent} & \Gamma & \Gamma \text{ multiset of formulas} \\ \end{array}$$

$$A, B ::= p \mid \overline{p} \mid A \land B \mid A \lor B$$

$$\overline{A \land B} := \overline{A} \lor \overline{B} \qquad \overline{A \lor B} := \overline{A} \land \overline{B}$$

$$A \to B := \overline{A} \lor B \qquad \bot := p \land \overline{p}$$

Rules of G3cpone

init 
$$\frac{\Gamma, \rho, \overline{\rho}}{\Gamma, A \wedge B}$$
  $\wedge \frac{\Gamma, A \Gamma, B}{\Gamma, A \wedge B}$   $\wedge \frac{\Gamma, A, B}{\Gamma, A \vee B}$ 

Nested sequents for modal logic

$$A, B ::= p \mid \overline{p} \mid A \land B \mid A \lor B \mid \Box A \mid \Diamond A$$

Nested sequents for modal logic

$$A, B ::= p \mid \overline{p} \mid A \land B \mid A \lor B \mid \Box A \mid \Diamond A$$

$$\overline{A \wedge B} := \overline{A} \vee \overline{B} \qquad \overline{A \vee B} := \overline{A} \wedge \overline{B} \qquad \overline{\Box} A := \Diamond \overline{A} \qquad \overline{\Diamond} A := \Box \overline{A}$$

Nested sequents for modal logic

$$A, B ::= p \mid \overline{p} \mid A \land B \mid A \lor B \mid \Box A \mid \Diamond A$$

$$\overline{A \wedge B} := \overline{A} \vee \overline{B} \qquad \overline{A \vee B} := \overline{A} \wedge \overline{B} \qquad \overline{\Box} \overline{A} := \Diamond \overline{A} \qquad \overline{\Diamond} \overline{A} := \Box \overline{A}$$

$$A \to B := \overline{A} \vee B \qquad \bot := p \wedge \overline{p}$$

Nested sequents for modal logic

$$A, B ::= p \mid \overline{p} \mid A \land B \mid A \lor B \mid \Box A \mid \Diamond A$$

$$\overline{A \land B} := \overline{A} \lor \overline{B} \qquad \overline{A \lor B} := \overline{A} \land \overline{B} \qquad \overline{\Box A} := \Diamond \overline{A} \qquad \overline{\Diamond A} := \Box \overline{A}$$

$$A \to B := \overline{A} \lor B \qquad \bot := p \land \overline{p}$$

Nested sequents (denoted  $\Gamma, \Delta, ...$ ) are inductively generated as follows:

Nested sequents for modal logic

$$A, B ::= p \mid \overline{p} \mid A \land B \mid A \lor B \mid \Box A \mid \Diamond A$$

$$\overline{A \land B} := \overline{A} \lor \overline{B} \qquad \overline{A \lor B} := \overline{A} \land \overline{B} \qquad \overline{\Box} \overline{A} := \Diamond \overline{A} \qquad \overline{\Diamond} \overline{A} := \Box \overline{A}$$

$$A \to B := \overline{A} \lor B \qquad \bot := p \land \overline{p}$$

Nested sequents (denoted  $\Gamma, \Delta, ...$ ) are inductively generated as follows:

A multiset of formulas is a nested sequent;

Nested sequents for modal logic

$$A, B ::= p \mid \overline{p} \mid A \land B \mid A \lor B \mid \Box A \mid \Diamond A$$

$$\overline{A \land B} := \overline{A} \lor \overline{B} \qquad \overline{A \lor B} := \overline{A} \land \overline{B} \qquad \overline{\Box} \overline{A} := \Diamond \overline{A} \qquad \overline{\Diamond} \overline{A} := \Box \overline{A}$$

$$A \to B := \overline{A} \lor B \qquad \bot := p \land \overline{p}$$

Nested sequents (denoted  $\Gamma, \Delta, ...$ ) are inductively generated as follows:

- A multiset of formulas is a nested sequent;
- ▶ If  $\Gamma$  and  $\Delta$  are nested sequents, then  $\underline{\Gamma, \Delta}$  is a nested sequent;

Nested sequents for modal logic

$$A, B ::= p \mid \overline{p} \mid A \land B \mid A \lor B \mid \Box A \mid \Diamond A$$

$$\overline{A \land B} := \overline{A} \lor \overline{B} \qquad \overline{A \lor B} := \overline{A} \land \overline{B} \qquad \overline{\Box} \overline{A} := \Diamond \overline{A} \qquad \overline{\Diamond} \overline{A} := \Box \overline{A}$$

$$A \to B := \overline{A} \lor B \qquad \bot := p \land \overline{p}$$

Nested sequents (denoted  $\Gamma, \Delta, ...$ ) are inductively generated as follows:

- A multiset of formulas is a nested sequent;
- ▶ If  $\Gamma$  and  $\Delta$  are nested sequents, then  $\Gamma$ ,  $\Delta$  is a nested sequent;
- If Γ is a nested sequent, then [Γ] is a nested sequent.
   We call [Γ] a boxed sequent.

Nested sequents for modal logic

$$A, B ::= p \mid \overline{p} \mid A \land B \mid A \lor B \mid \Box A \mid \Diamond A$$

$$\overline{A \land B} := \overline{A} \lor \overline{B} \qquad \overline{A \lor B} := \overline{A} \land \overline{B} \qquad \overline{\Box} \overline{A} := \Diamond \overline{A} \qquad \overline{\Diamond} \overline{A} := \Box \overline{A}$$

$$A \to B := \overline{A} \lor B \qquad \bot := p \land \overline{p}$$

Nested sequents (denoted  $\Gamma, \Delta, \dots$ ) are inductively generated as follows:

- A multiset of formulas is a nested sequent;
- ▶ If  $\Gamma$  and  $\Delta$  are nested sequents, then  $\Gamma$ ,  $\Delta$  is a nested sequent;
- If Γ is a nested sequent, then [Γ] is a nested sequent.
  We call [Γ] a boxed sequent.

Nested sequents are multisets of formulas and boxed sequents:

$$= A_1, \ldots, A_m, [\Delta_1], \ldots, [\Delta_n]$$

#### Trees

$$\Gamma = A_1, \ldots, A_m, [\Delta_1], \ldots, [\Delta_n]$$

To a nested sequent  $\Gamma$  there corresponds the following tree  $\underline{tr(\Gamma)}$ , whose nodes  $\gamma, \delta, \ldots$  are multisets of formulas:



The formula interpretation  $i(\Gamma)$  of a nested sequent  $\Gamma$  is defined as:

- $If m = n = 0, then i(\Gamma) := \bot$
- ▶ Otherwise,  $i(\Gamma) := A_1 \lor \cdots \lor A_m \lor \Box(i(\Delta_1)) \lor \cdots \lor \Box(i(\Delta_n))$

A. [ B1] [B2]

#### Examples

1) 
$$\begin{bmatrix} \Gamma = A, [B_4, B_2] \\ what is  $fa(\Gamma)$ ? 
$$A, [B_1, B_2, [C], [D]] \\ what is  $fa(\Gamma)$ ? 
$$A, [B_1, B_2, [C], [D]] \\ what is  $fa(\Gamma)$ ? 
$$A = A \\ A = A$$$$$$$$

#### Contexts

A context is a nested sequent with one or multiple holes denoted by {}, each taking the place of a formula in the nested sequent.

- ▶ Unary context \( \Gamma\{ \} \)
- ▶ Binary context \(\Gamma\{\}\)\

#### Contexts

A context is a nested sequent with one or multiple holes, denoted by {}, each taking the place of a formula in the nested sequent.

- ▶ Binary context  $\Gamma\{\}\}\}$   $\rightsquigarrow$   $\Gamma\{\Delta_1\}\{\Delta_2\}$ : filling  $\Gamma\{\}\}$  with  $\Delta_1, \Delta_2$

#### Contexts

A context is a nested sequent with one or multiple holes, denoted by {}, each taking the place of a formula in the nested sequent.

- ▶ Unary context  $\Gamma$ {}  $\rightsquigarrow$   $\Gamma$ { $\Delta$ }: filling  $\Gamma$ {} with a nested sequent  $\Delta$
- ▶ Binary context  $\Gamma$ {}{}  $\rightsquigarrow \Gamma$ { $\Delta_1$ }{ $\Delta_2$ }: filling  $\Gamma$ {}{} with  $\Delta_1, \Delta_2$



#### Contexts

A context is a nested sequent with one or multiple holes, denoted by {}, each taking the place of a formula in the nested sequent.

- ▶ Unary context  $\Gamma\{\}$   $\rightsquigarrow$   $\Gamma\{\Delta\}$ : filling  $\Gamma\{\}$  with a nested sequent  $\Delta$
- $\quad \textbf{ Binary context } \Gamma\{\}\{\} \quad \leftrightsquigarrow \quad \Gamma\{\Delta_1\}\{\Delta_2\}\text{: filling } \Gamma\{\}\{\} \text{ with } \Delta_1, \Delta_2$



#### Contexts

A context is a nested sequent with one or multiple holes, denoted by {}, each taking the place of a formula in the nested sequent.

- ▶ Unary context  $\Gamma$ {}  $\rightsquigarrow$   $\Gamma$ { $\Delta$ }: filling  $\Gamma$ {} with a nested sequent  $\Delta$
- ▶ Binary context  $\Gamma$ {}{}  $\rightsquigarrow \Gamma$ { $\Delta_1$ }{ $\Delta_2$ }: filling  $\Gamma$ {}{} with  $\Delta_1, \Delta_2$

The depth  $depth(\Gamma\{\})$  of a unary context  $\Gamma\{\}$  is defined as:

```
\begin{array}{ll} \triangleright \; depth(\{\}) := 0; \\ \triangleright \; depth(\Gamma\{\}, \Delta) := \; depth(\Gamma\{\}); \\ \triangleright \; depth([\Gamma\{\}]) := \; depth(\Gamma\{\}) + 1. \end{array} \qquad \text{depth} \; (\Gamma\{\Delta_i\}, \Delta_i\}) = 1
```

#### Rules of NK



$$\begin{array}{c} \operatorname{init} \frac{}{\Gamma\{\rho,\overline{\rho}\}} & \wedge \frac{\Gamma\{A\} - \Gamma\{B\}}{\Gamma\{A \wedge B\}} & \vee \frac{\Gamma\{A,B\}}{\Gamma\{A \vee B\}} \\ \\ \square \frac{}{\Gamma\{\square A\}} & \diamond \frac{\Gamma\{\diamondsuit A,[A,\Delta]\}}{\Gamma\{\diamondsuit A,[\Delta]\}} \end{array}$$

Example. Proof of  $(\lozenge p \to \Box q) \to \Box (p \to q)$  in NK

$$\stackrel{\text{init}}{\diamond} \frac{\overline{\diamond p, [p, \bar{p}, q]}}{\diamond p, [\bar{p}, q]} \stackrel{\text{init}}{\diamond} \frac{\overline{\diamond \bar{q}, [\bar{q}, \bar{p}, q]}}{\diamond \bar{q}, [\bar{p}, q]} \\
\stackrel{\wedge}{\diamond} \frac{\langle p, \langle \bar{p}, q \rangle}{\diamond p, \langle \bar{q}, [\bar{p}, q]} \\
\stackrel{\wedge}{\diamond} \frac{\langle p, \langle \bar{p}, q \rangle}{\diamond p, \langle \bar{q}, [\bar{p}, q]} \\
\stackrel{\vee}{\diamond} \frac{\langle p, \langle \bar{q}, [\bar{p}, q] \rangle}{\diamond p, \langle \bar{q}, \Box (\bar{p} \vee q)} \\
\stackrel{\vee}{\vee} \frac{\langle p, \langle \bar{q}, [\bar{p}, q] \rangle}{\langle p, \langle \bar{q}, \bar{q}, \Box (\bar{p} \vee q)} \\
\stackrel{\vee}{\vee} \frac{\langle p, \langle \bar{q}, [\bar{p}, q] \rangle}{\langle p, \langle \bar{q}, \bar{q}, \Box (\bar{p} \vee q)} \\
\stackrel{\vee}{\vee} \frac{\langle p, \langle \bar{q}, [\bar{p}, q] \rangle}{\langle p, \langle \bar{q}, \bar{q}, \bar{q}, \Box (\bar{p} \vee q)} \\
\stackrel{\vee}{\vee} \frac{\langle p, \langle \bar{q}, [\bar{p}, q] \rangle}{\langle p, \langle \bar{q}, \bar$$

#### Roadmap



Validity of nested sequents [Kuznets & Straßburger, 2018]

```
For a nested sequent \Gamma and a model M = \langle W, R, v \rangle, an M-map for \Gamma is a map f : tr(\Gamma) \to W such that whenever \delta is a child of \gamma in tr(\Gamma), then f(\gamma)Rf(\delta).
```

Validity of nested sequents [Kuznets & Straßburger, 2018]

For a nested sequent  $\Gamma$  and a model  $\mathcal{M} = \langle W, R, v \rangle$ , an  $\mathcal{M}$ -map for  $\Gamma$  is a map  $f : tr(\Gamma) \to W$  such that whenever  $\delta$  is a child of  $\gamma$  in  $tr(\Gamma)$ , then  $f(\gamma)Rf(\delta)$ .

A nested sequent  $\Gamma$  is satisfied by an  $\mathcal{M}$ -map for  $\Gamma$  iff

$$\mathcal{M}, f(\delta) \models B$$
, for some  $\delta \in tr(\Gamma)$ , for some  $B \in \delta$ 

Validity of nested sequents [Kuznets & Straßburger, 2018]

For a nested sequent  $\Gamma$  and a model  $\mathcal{M} = \langle W, R, v \rangle$ , an  $\mathcal{M}$ -map for  $\Gamma$  is a map  $f : tr(\Gamma) \to W$  such that whenever  $\delta$  is a child of  $\gamma$  in  $tr(\Gamma)$ , then  $f(\gamma)Rf(\delta)$ .

A nested sequent  $\Gamma$  is satisfied by an  $\mathcal{M}$ -map for  $\Gamma$  iff

$$\mathcal{M}, f(\delta) \models B$$
, for some  $\delta \in tr(\Gamma)$ , for some  $B \in \delta$ 

A nested sequent  $\Gamma$  is refuted by an  $\mathcal{M}$ -map for  $\Gamma$  iff

$$\mathcal{M}, f(\delta) \not\models B$$
, for all  $\underline{\delta} \in tr(\Gamma)$ , for all  $\underline{B} \in \delta$ 

Validity of nested sequents [Kuznets & Straßburger, 2018]

For a nested sequent  $\Gamma$  and a model  $\mathcal{M} = \langle W, R, v \rangle$ , an  $\mathcal{M}$ -map for  $\Gamma$  is a map  $\underline{f} : tr(\Gamma) \to W$  such that whenever  $\delta$  is a child of  $\gamma$  in  $tr(\Gamma)$ , then  $f(\gamma)Rf(\delta)$ .

A nested sequent  $\Gamma$  is satisfied by an  $\mathcal{M}$ -map for  $\Gamma$  iff

$$\mathcal{M}, f(\underline{\delta}) \models B$$
, for some  $\delta \in tr(\Gamma)$ , for some  $B \in \delta$ 

A nested sequent  $\Gamma$  is refuted by an  $\mathcal{M}$ -map for  $\Gamma$  iff

$$\mathcal{M}, f(\delta) \not\models B$$
, for all  $\delta \in tr(\Gamma)$ , for all  $B \in \delta$ 

A nested sequent is <u>valid</u> iff it is satisfied by all  $\mathcal{M}$ -maps for  $\Gamma$ , for all models  $\mathcal{M}$ .

#### Soundness of NK

```
Lemma. If \Gamma is derivable in NK then \Gamma is valid in all Kripke frames.
Proof. Induction on height of desiration of T.
Case 1 : The last rule applied in desir. of I is 1
                       need to frove:
                         if [[A]] is valid, then [[DA] is would
condrapositive: if [[A] is refuted, then [[A]] is refuted
                   there is It, & s.t.
                  → 1c, f(5) \ B for all Setr([[aA]), for all BES
                   Let y be such that DAEXE tr([{DA?)
                      M, f(x) & CA up there is wews. t. f(x) Rw
Take H, take g' s.t. g'(\varepsilon) = \omega and g'(s) = g(s) for all other
SE to (TIEA]3)
check: 17, &'(8) & B for all Se to([[A]]).
```

#### Roadmap



#### Completeness of NK



#### Completeness of NK

$$\operatorname{wk} \frac{\Gamma\{\emptyset\}}{\Gamma\{\Delta\}} \qquad \operatorname{ctr} \frac{\Gamma\{\Delta,\Delta\}}{\Gamma\{\Delta\}} \qquad \operatorname{cut} \frac{\Gamma\{A\} - \Gamma\{\overline{A}\}}{\Gamma\{\emptyset\}}$$

Lemma. The rules wk and ctr are hp-admissible in NK.

#### Completeness of NK

$$\operatorname{wk} \frac{\Gamma\{\emptyset\}}{\Gamma\{\Delta\}} \qquad \operatorname{ctr} \frac{\Gamma\{\Delta,\Delta\}}{\Gamma\{\Delta\}} \qquad \operatorname{cut} \frac{\Gamma\{A\} \quad \Gamma\{\overline{A}\}}{\Gamma\{\emptyset\}} \qquad \frac{\Gamma\{\triangle \emptyset, \lceil \theta, \rfloor \rceil}{\Gamma\{\triangle \emptyset, \lceil \Delta \rceil \rceil}$$

Lemma. The rules wk and ctr are hp-admissible in NK.

Lemma. All the rules of NK are hp-invertible.

#### Completeness of NK

$$\mathsf{wk}\,\frac{\Gamma\{\emptyset\}}{\Gamma\{\Delta\}} \qquad \qquad \mathsf{ctr}\,\frac{\Gamma\{\Delta,\Delta\}}{\Gamma\{\Delta\}} \qquad \qquad \mathsf{cut}\,\frac{\Gamma\{A\}-\Gamma\{\overline{A}\}}{\Gamma\{\emptyset\}}$$

Lemma. The rules wk and ctr are hp-admissible in NK.

Lemma. All the rules of NK are hp-invertible.

Theorem. The cut rule is admissible in NK.

#### Completeness of NK

$$\text{wk} \frac{ \Gamma\{\emptyset\} }{ \Gamma\{\Delta\} } \qquad \text{ctr} \frac{ \Gamma\{\Delta,\Delta\} }{ \Gamma\{\Delta\} } \qquad \text{cut} \frac{ \Gamma\{A\} \quad \Gamma\{A\} }{ \Gamma\{\emptyset\} }$$

Lemma. The rules wk and ctr are hp-admissible in NK.

Lemma. All the rules of NK are hp-invertible.

Theorem. The cut rule is admissible in NK.

*Proof sketch.* Assume that the two premisses of cut are derivable in NK, and show how to construct a derivation of the conclusion of the conclusion. Lexicographic induction on (c, h). Seem of height of  $D_1$  and  $D_2$ 



#### One cut reduction case









#### One cut reduction case



 $A := \Box B$ , and  $\Box B$  is frincipal in the last rule applied in  $D_4$ ,  $D_2$ 

#### One cut reduction case







One cut reduction case A:= OB, and OB is frincipal in the last rule applied in D1, D2 r{[b],[4]? <u>Γ{◊B, [B, Δ]</u>? Γ{◊B, [Δ] ? Γ{ aB, [Δ] } [[A] } [[B], [A]? [{aB,[∆]} D= Γ{◊B, [B, Δ]} aut Γ{ [ B, [ B, Δ] ] [[B], [A] ? WK Γ{[B, Δ]} [[B,A],[A]] aut Γ{[B, Δ], [Δ] [[]],[]]} [ { [ A ] }

#### Roadmap

Theorem. If  $\Gamma \vdash A$ , then the nested sequent  $\bar{\Gamma} \lor A$  is derivable in NK.



Semantic completeness (tamouou)

Lemma (Proof or Countermodel). For  $\Gamma$  nested sequent, either  $\Gamma$  is derivable in NK or there is an  $\mathcal{M}$ -map for  $\Gamma$  such that  $\Gamma$  is refuted by the  $\mathcal{M}$ -map.

Theorem (Semantic Completeness). If  $\Gamma \models A$ , then the nested sequent  $\overline{\Gamma} \lor A$  is derivable in NK.

Proof or countermodel (tomonou)

Lemma (Proof or Countermodel). For  $\Gamma$  nested sequent, either  $\Gamma$  is derivable in NK or there is an  $\mathcal{M}$ -map for  $\Gamma$  such that  $\Gamma$  is refuted by the  $\mathcal{M}$ -map.

Proof or countermodel (townsew)

Lemma (Proof or Countermodel). For  $\Gamma$  nested sequent, either  $\Gamma$  is derivable in NK or there is an  $\mathcal{M}$ -map for  $\Gamma$  such that  $\Gamma$  is refuted by the  $\mathcal{M}$ -map.



Example (tomorrow)



## Nested sequents for the S5-cube



Rules for extensions:  $NK \cup X^{\diamond}$ 

$$d^{\diamond} \frac{\Gamma\{\diamondsuit A, [A]\}}{\Gamma\{\diamondsuit A\}} \qquad t^{\diamond} \frac{\Gamma\{\diamondsuit A, A\}}{\Gamma\{\diamondsuit A\}} \qquad b^{\diamond} \frac{\Gamma\{[\Delta, \diamondsuit A], A\}}{\Gamma\{[\Delta, \diamondsuit A]\}}$$
$$4^{\diamond} \frac{\Gamma\{\diamondsuit A, [\diamondsuit A, \Delta]\}}{\Gamma\{\diamondsuit A, [\Delta]\}} \qquad 5^{\diamond} \frac{\Gamma\{\diamondsuit A\}\{\diamondsuit A\}}{\Gamma\{\diamondsuit A\}\{\emptyset\}} \underset{depth(\Gamma\{|\{\emptyset\}\}) > 0}{\operatorname{depth}(\Gamma\{|\{\emptyset\}\}) > 0}$$

Rules for extensions:  $NK \cup X^{\diamond}$ 

$$d^{\diamond} \frac{\Gamma\{\Diamond A, [A]\}}{\Gamma\{\Diamond A\}} \qquad t^{\diamond} \frac{\Gamma\{\Diamond A, A\}}{\Gamma\{\Diamond A\}} \qquad b^{\diamond} \frac{\Gamma\{[\Delta, \Diamond A], A\}}{\Gamma\{[\Delta, \Diamond A]\}}$$

$$4^{\diamond} \frac{\Gamma\{\Diamond A, [\Diamond A, \Delta]\}}{\Gamma\{\Diamond A, [\Delta]\}} \qquad 5^{\diamond} \frac{\Gamma\{\Diamond A\}\{\Diamond A\}}{\Gamma\{[\emptyset]\}} \frac{depth(\Gamma\{[\emptyset]) > 0}{\mathbb{E}^{\bullet}}$$

For  $X \subseteq \{d,t,b,4,5\}$ , we write  $X^{\diamond}$  for the corresponding subset of  $\{d^{\diamond},t^{\diamond},b^{\diamond},4^{\diamond},5^{\diamond}\}$ . We shall consider the calculi NK  $\cup$  X $^{\diamond}$ .

Rules for extensions:  $NK \cup X^{\diamond}$ 

$$\begin{array}{ll} \operatorname{d}^{\diamond} \frac{ \Gamma\{\Diamond A, [A]\} }{ \Gamma\{\Diamond A\} } & \operatorname{t}^{\diamond} \frac{ \Gamma\{\Diamond A, A\} }{ \Gamma\{\Diamond A\} } & \operatorname{b}^{\diamond} \frac{ \Gamma\{\left[\Delta, \Diamond A\right], A\} }{ \Gamma\{\left[\Delta, \Diamond A\right]\} } \\ \\ \operatorname{d}^{\diamond} \frac{ \Gamma\{\Diamond A, \left[\Diamond A, \Delta\right]\} }{ \Gamma\{\Diamond A, \left[\Delta\right]\} } & \operatorname{dopth}(\Gamma\{\{|\emptyset|\}) > 0 \end{array}$$

For  $X \subseteq \{d,t,b,4,5\}$ , we write  $X^{\diamond}$  for the corresponding subset of  $\{d^{\diamond},t^{\diamond},b^{\diamond},4^{\diamond},5^{\diamond}\}$ . We shall consider the calculi NK  $\cup$   $X^{\diamond}$ .

Example. Proof of  $\Box p \rightarrow \Box \Box p$  in NK  $\cup \{t, 4\}$ 

$$\begin{array}{c} \text{init} \\ \uparrow^{\circ} \\ \hline \Diamond \bar{p}, [\Diamond \bar{p}, [\Diamond \bar{p}, \bar{p}, p]] \\ 4^{\circ} \\ \hline \langle \bar{p}, [\Diamond \bar{p}, [\Diamond \bar{p}, p]] \\ \hline \langle \bar{p}, [\Diamond \bar{p}, [p]] \\ \hline \langle \bar{p}, [p] \\ \hline \langle \bar{p}, [p] \\ \hline \langle \bar{p}, [p] \\ \hline \langle \bar{p}, \Box p \\ \hline \langle \bar{p}, \Box p \\ \hline \langle \bar{p}, \Box p \\ \hline \rangle \\ \hline \langle \bar{p}, \Box p \\ \hline \rangle \\ \hline \langle \bar{p}, \Box p \\ \hline \rangle \\ \hline \langle \bar{p}, \Box p \\ \hline \rangle \\ \hline \langle \bar{p}, \Box p \\ \hline \end{array}$$

Structural rules [Brünnler, 2009]

Structural rules [Brünnler, 2009]

For  $X \subseteq \{d, t, b, 4, 5\}$ :

Lemma. The rules wk and ctr are hp-admissible in NK  $\cup$  X $^{\diamond}$ .

Structural rules [Brünnler, 2009]

For  $X \subseteq \{d, t, b, 4, 5\}$ :

Lemma. The rules wk and ctr are hp-admissible in NK  $\cup$  X $^{\diamond}$ .

Lemma. All the rules of NK  $\cup$  X $^{\diamond}$  are hp-invertible.

Structural rules [Brünnler, 2009]

For  $X \subseteq \{d, t, b, 4, 5\}$ :

Lemma. The rules wk and ctr are hp-admissible in NK  $\cup$  X $^{\diamond}$ .

Lemma. All the rules of NK  $\cup$  X $^{\diamond}$  are hp-invertible.

Proposition. Rule  $5^{\diamond}$  is derivable in NK  $\cup \{5_1^{\diamond}, 5_2^{\diamond}, 5_3^{\diamond}\} \cup \{ctr\}$ .

Structural rules [Brünnler, 2009]

For  $X \subseteq \{d, t, b, 4, 5\}$ :

Lemma. The rules wk and ctr are hp-admissible in NK  $\cup$  X $^{\diamond}$ .

Lemma. All the rules of NK  $\cup$  X $^{\diamond}$  are hp-invertible.

Proposition. Rule  $5^{\diamondsuit}$  is derivable in NK  $\cup \{5_1^{\diamondsuit}, 5_2^{\diamondsuit}, 5_3^{\diamondsuit}\} \cup \{ctr\}$ .

For  $X \subseteq \{d, t, b, 4, 5\}$ , a nested sequent is X-valid iff it is satisfied by all M-maps for  $\Gamma$ , for all models M satisfying the frame conditions in X.

Theorem. If  $\Gamma$  is derivable in NK  $\cup$  X $^{\diamond}$  then  $\Gamma$  is valid in all X-frames.

Three problems for completeness

Three problems for completeness

▶ Axiom 5, that is,  $\Diamond A \rightarrow \Box \Diamond A$ , is valid in all  $\{b, 4\}$ -frames, but it is not derivable in NK  $\cup \{b^{\Diamond}, 4^{\Diamond}\}$ .

#### Three problems for completeness

▶ Axiom 5, that is,  $\Diamond A \to \Box \Diamond A$ , is valid in all {b, 4}-frames, but it is not derivable in NK  $\cup$  {b $^{\Diamond}$ , 4 $^{\Diamond}$ }.

Failed proof of  $\Diamond A \to \Box \Diamond A$  in NK  $\cup \{b^{\Diamond}, 4^{\Diamond}\}\$ 

$$b^{\diamond} \frac{[\bar{p}], p, [\diamond p]}{[\bar{p}], [\diamond p]}$$

$$\Box \bar{p}, [\diamond p]$$

$$\Box \bar{p}, \Box \diamond p$$

$$\Box \bar{p}, \Box \diamond p$$

#### Three problems for completeness

- ▶ Axiom 5, that is,  $\Diamond A \rightarrow \Box \Diamond A$ , is valid in all  $\{b, 4\}$ -frames, but it is not derivable in NK  $\cup \{b^{\Diamond}, 4^{\Diamond}\}$ .
- ▶ Axiom 4, that is,  $A \to \Box \Box A$ , is valid in all  $\{t, 5\}$ -frames, but it is not derivable in NK  $\cup \{t^{\diamondsuit}, 5^{\diamondsuit}\}$ .

Failed proof of  $\Diamond A \rightarrow \Box \Diamond A$  in NK  $\cup \{b^{\Diamond}, 4^{\Diamond}\}\$ 

$$b^{\diamond} \frac{[\bar{p}], p, [\diamond p]}{\Box \bar{p}, [\diamond p]} \\ \Box \bar{p}, [\diamond p] \\ \Box \bar{p}, \Box \diamond p \\ \lor \Box \bar{p} \lor \Box \diamond p$$

#### Three problems for completeness

- Axiom 5, that is,  $\Diamond A \to \Box \Diamond A$ , is valid in all  $\{b,4\}$ -frames, but it is not derivable in NK  $\cup \{b^{\Diamond},4^{\Diamond}\}$ .
  - Axiom 4, that is,  $A \to \Box \Box A$ , is valid in all  $\{t, 5\}$ -frames, but it is not derivable in NK  $\cup \{t^{\diamond}, 5^{\diamond}\}$ .
  - ▶ Axiom 4, that is,  $A \to \Box \Box A$ , is valid in all {b, 5}-frames, but it is not derivable in NK  $\cup$  {b $^{\diamond}$ , 5 $^{\diamond}$ }.

Failed proof of  $\Diamond A \rightarrow \Box \Diamond A$  in NK  $\cup \{b^{\Diamond}, 4^{\Diamond}\}\$ 

$$b^{\diamond} \frac{[\bar{p}], p, [\diamond p]}{\Box \bar{p}, [\diamond p]}$$

$$\Box \bar{p}, [\diamond p]$$

$$\Box \bar{p}, \Box \diamond p$$

$$\Box \bar{p} \vee \Box \diamond p$$

Solution # 1 [Brünnler, 2009]

For each set of frames characterised by the 5-axioms, there is at least one combination of modal rules which is complete.

Solution # 1 [Brünnler, 2009]

For each set of frames characterised by the 5-axioms, there is at least one combination of modal rules which is complete.

For  $X \subseteq \{d, t, b, 4, 5\}$ , the 45-closure of X is defined as:

$$\hat{X} = \begin{cases} X \cup \{4\} & \text{if } \{b,5\} \subseteq X \text{ or } \{t,5\} \subseteq X \\ X \cup \{5\} & \text{if } \{b,4\} \subseteq X \\ X & \text{otherwise} \end{cases}$$

We say that X is 45-closed if  $X = \hat{X}$ .

Solution # 1 [Brünnler, 2009]

For each set of frames characterised by the 5-axioms, there is at least one combination of modal rules which is complete.

For  $X \subseteq \{d, t, b, 4, 5\}$ , the 45-closure of X is defined as:

$$\hat{X} = \begin{cases} X \cup \{4\} & \text{if } \{b,5\} \subseteq X \text{ or } \{t,5\} \subseteq X \\ X \cup \{5\} & \text{if } \{b,4\} \subseteq X \\ X & \text{otherwise} \end{cases}$$

We say that X is 45-closed if  $X = \hat{X}$ .

Proposition. For  $X \subseteq \{d, t, b, 4, 5\}$  X is 45-closed iff, for  $\rho \in \{4, 5\}$ , it holds that if  $\rho$  is valid in all X-frames, then  $\rho \in X$ .

Solution # 1 [Brünnler, 2009]

For each set of frames characterised by the 5-axioms, there is at least one combination of modal rules which is complete.

For  $X \subseteq \{d, t, b, 4, 5\}$ , the 45-closure of X is defined as:

$$\hat{X} = \begin{cases} X \cup \{4\} & \text{if } \{b,5\} \subseteq X \text{ or } \{t,5\} \subseteq X \\ X \cup \{5\} & \text{if } \{b,4\} \subseteq X \\ X & \text{otherwise} \end{cases}$$

We say that X is 45-closed if  $X = \hat{X}$ .

Proposition. For  $X \subseteq \{d, t, b, 4, 5\}$  X is 45-closed iff, for  $\rho \in \{4, 5\}$ , it holds that if  $\rho$  is valid in all X-frames, then  $\rho \in X$ .

To prove:

sementic

Theorem (Completeness). For  $\underline{X} \subseteq \{d,t,b,4,5\}$ , if  $\Gamma$  is  $\underline{X}$ -valid, then  $\Gamma$  is derivable in NK  $\cup (\hat{X}^{\diamond})$ .

Solution # 1 - Syntactic completeness [Brünnler, 2009]

Theorem (Cut-elimination). For  $X \subseteq \{d, t, b, 4, 5\}$  45-closed, if  $\Gamma$  is derivable in NK  $\cup$  X $^{\diamond}$   $\cup$  {cut}, then it is derivable in NK  $\cup$  X $^{\diamond}$ .

Solution # 1 - Syntactic completeness [Brünnler, 2009]

Theorem (Cut-elimination). For  $X \subseteq \{d, t, b, 4, 5\}$  4<u>5-closed</u>, if  $\Gamma$  is derivable in NK  $\cup$  X $^{\diamond}$   $\cup$  {cut}, then it is derivable in NK  $\cup$  X $^{\diamond}$ .

#### The proof uses:

A generalised version of cut (Y-cut, eliminable)

$$\underset{\text{cut}}{ \frac{ \Gamma\{[A], [\Delta]\} }{ \Gamma\{\Box A, [\Delta]\} } } \overset{\text{4}}{\underset{\text{cut}}{ }} \frac{ \Gamma\{\diamondsuit \overline{A}, [\diamondsuit \overline{A}, \Delta]\} }{ \Gamma\{\diamondsuit \overline{A}, [\Delta]\} }$$

Additional structural modal rules (admissible)

Solution # 1 - Syntactic completeness [Brünnler, 2009]

Theorem (Cut-elimination). For  $X \subseteq \{d,t,b,4,5\}$  45-closed, if  $\Gamma$  is derivable in  $NK \cup X^{\Diamond} \cup \{cut\}$ , then it is derivable in  $NK \cup X^{\Diamond}$ .

#### The proof uses:

A generalised version of cut (Y-cut, eliminable)

$$\frac{\Gamma\{[A], [\Delta]\}}{\Gamma\{\Box A, [\Delta]\}} t^{\circ} \frac{\Gamma\{\Diamond \overline{A}, [\Diamond \overline{A}, \Delta]\}}{\Gamma\{\Diamond \overline{A}, [\Delta]\}} \frac{\Gamma\{\Box A, [\Delta]\}}{\Gamma\{\Box A, [\Box A, \Delta]\}} \frac{\Gamma\{\Box A, [\Delta]\}}{\Gamma\{\Box A, [\Box A, \Delta]\}} \frac{\Gamma\{\Box A, [\Delta]\}}{\Gamma\{\Box A, [\Box A, \Delta]\}} \frac{\Gamma\{\Box A, [\Delta]\}}{\Gamma\{\Box A, [\Delta]\}} \frac{\Gamma\{\Box A, [\Delta]\}}{\alpha t}$$

Additional structural modal rules (admissible)

cut and Y-cut



▶ there is a derivation of  $\Gamma\{\diamondsuit\overline{A}\}\{\diamondsuit\overline{A}\}^n$  to  $\Gamma\{\diamondsuit\overline{A}\}\{\emptyset\}^n$  in system  $Y^\diamondsuit$ .

Example: 4-cut

$$\operatorname{cut} \frac{ \Gamma\{A\} - \Gamma\{\overline{A}\} }{ \Gamma\{\emptyset\} } \qquad \qquad \operatorname{Y-cut} \frac{ \Gamma\{\Box A\}\{\emptyset\}^n - \Gamma\{\diamondsuit\overline{A}\}\{\diamondsuit\overline{A}\}^n }{ \Gamma\{\emptyset\}\{\emptyset\}^n }$$

If  $Y = \{4\}$ , then  $\Gamma\{\}\{\}^n$  is of the form  $\Gamma_1\{\{\}\}, \Gamma_2\{\}^n\}$ :

$$\underset{\textbf{4-cut}}{\underbrace{\Gamma_1\{\{\Box A\},\Gamma_2\{\emptyset\}^n\}\quad\Gamma_1\{\{\diamondsuit A\},\Gamma_2\{\diamondsuit A\}^n\}}}{\underbrace{\Gamma_1\{\{\emptyset\},\Gamma_2\{\emptyset\}^n\}}}$$

#### Structural modal rules

$$\begin{split} & d^{[]}\frac{\Gamma\{\left[\tilde{\boldsymbol{\Omega}}\right]\}}{\Gamma\{\boldsymbol{\emptyset}\}} & t^{[]}\frac{\Gamma\{\left[\tilde{\boldsymbol{\Delta}}\right]\}}{\Gamma\{\boldsymbol{\Delta}\}} & b^{[]}\frac{\Gamma\{\left[\boldsymbol{\Sigma},\left[\tilde{\boldsymbol{\Delta}}\right]\right]\}}{\Gamma\{\boldsymbol{\Delta},\left[\boldsymbol{\Sigma}\right]\}} \\ & 4^{[]}\frac{\Gamma\{\left[\tilde{\boldsymbol{\Delta}}\right],\left[\boldsymbol{\Sigma}\right]\}}{\Gamma\{\left[\left[\tilde{\boldsymbol{\Delta}}\right],\boldsymbol{\Sigma}\right]\}} & 5^{[]}\frac{\Gamma\{\left[\tilde{\boldsymbol{\Delta}}\right]\}\{\boldsymbol{\emptyset}\}}{\Gamma\{\boldsymbol{\emptyset}\}\{\left[\tilde{\boldsymbol{\Delta}}\right]\}} \ \textit{depth}(\Gamma\{\}\{\left[\tilde{\boldsymbol{\Delta}}\right]\}) > 0 \end{split}$$

For  $X \subseteq \{d,t,b,4,5\}$ , we write  $X^{[]}$  for the corresponding subset of  $\{d^{[]},t^{[]},b^{[]},4^{[]},5^{[]}\}$ .

#### Structural modal rules

$$\begin{split} & d^{[1]}\frac{\Gamma\{\left[\emptyset\right]\}}{\Gamma\{\emptyset\}} & t^{[1]}\frac{\Gamma\{\left[\Delta\right]\}}{\Gamma\{\Delta\}} & b^{[1]}\frac{\Gamma\{\left[\Sigma,\left[\Delta\right]\right]\}}{\Gamma\{\Delta,\left[\Sigma\right]\}} \\ & d^{[1]}\frac{\Gamma\{\left[\Delta\right],\left[\Sigma\right]\}}{\Gamma\{\left[\left[\Delta\right],\Sigma\right]\}} & 5^{[1]}\frac{\Gamma\{\left[\Delta\right]\}\{\emptyset\}}{\Gamma\{\emptyset\}\{\left[\Delta\right]\}} \ depth(\Gamma\{\}\{\left[\Delta\right]\}) > 0 \end{split}$$

For  $X \subseteq \{d,t,b,4,5\}$ , we write  $X^{[]}$  for the corresponding subset of  $\{d^{[]},t^{[]},b^{[]},4^{[]},5^{[]}\}$ .

Example. Proof of  $\Diamond A \rightarrow \Box \Diamond A$  in NK  $\cup \{b^{[]}, 4^{[]}\}$ 



#### Cut-admissibility

Theorem (Cut-admissibility). For  $X \subseteq \{d, t, b, 4, 5\}$  45-closed, the cut rule and the Y-cut rule are admissible in  $NK \cup X^{\diamond}$ .

$$\begin{array}{c} \frac{\Gamma\{[A],[\Delta]\}}{\Gamma\{\Box A,[\Delta]\}} \overset{4}{\longrightarrow} \frac{\Gamma\{\Diamond\overline{A},[\Diamond\overline{A},\Delta]\}}{\Gamma\{\Diamond\overline{A},[\Delta]\}} & \leadsto & \frac{\Gamma\{[A],[\Delta]\}}{\Gamma\{\Box A,[\Delta]\}} & \Gamma\{\Diamond\overline{A},[\Diamond\overline{A},\Delta]\}}{\Gamma\{[\Delta]\}} \\ \frac{\Gamma\{[A],[[\Sigma]]\}}{\Gamma\{[\Delta]\}} & \diamond \frac{\Gamma\{\Diamond\overline{A},[\Diamond\overline{A},[\overline{A},\Sigma]]\}}{\Gamma\{\Diamond\overline{A},[\Diamond\overline{A},\Sigma]]\}} & \leadsto \\ \frac{\Gamma\{[A],[[\Sigma]]\}}{\Gamma\{[A],[[\Sigma]]\}} & & \overset{\Gamma\{[A],[\Sigma]]\}}{\Gamma\{[A],[\Sigma]]\}} & \overset{\text{w.s.}}{\Gamma\{[A],[[\Sigma]]\}} & \overset{\Gamma\{[A],[[\Sigma]]\}}{\Gamma\{[A],[\Sigma]]\}} \\ & \overset{\text{w.s.}}{\longrightarrow} \frac{\Gamma\{[A],[[\Sigma]]\}}{\Gamma\{[A],[[\Sigma]]\}} & \overset{\text{w.s.}}{\longrightarrow} \frac{\Gamma\{[A],[[\Sigma]]\}}{\Gamma\{[A],[[\Sigma]]\}} & \Gamma\{\Diamond\overline{A},[\Diamond\overline{A},\Sigma]]\} \\ & \overset{\text{out}}{\longrightarrow} \frac{\Gamma\{[A],[[\Sigma]]\}}{\Gamma\{[A],[[\Sigma]]\}} & \overset{\text{w.s.}}{\longrightarrow} \frac{\Gamma\{[A],[[\Sigma]]\}}{\Gamma\{[A],[[\Sigma]]\}} & \Gamma\{\Diamond\overline{A},[[X]]\} & \Gamma\{\Diamond\overline{A},[X]]\} \\ & \overset{\text{out}}{\longrightarrow} \frac{\Gamma\{[A],[X]\}}{\Gamma\{[A],[X]\}} & \overset{\text{w.s.}}{\longrightarrow} \frac{\Gamma\{[A],[X]\}}{\Gamma\{[A],[X]\}} & \Gamma\{\Diamond\overline{A},[X]\} & \Gamma\{\Diamond\overline{A},[X]\} \\ & \overset{\text{out}}{\longrightarrow} \frac{\Gamma\{[A],[X]\}}{\Gamma\{[A],[X]\}} & \overset{\text{w.s.}}{\longrightarrow} \frac{\Gamma\{[A],[X]\}}{\Gamma\{[A],[X]\}} & \Gamma\{\Diamond\overline{A},[X]\} & \Gamma\{\Diamond\overline{A},[X]\} \\ & \overset{\text{out}}{\longrightarrow} \frac{\Gamma\{[A],[X]\}}{\Gamma\{[A],[X]\}} & \overset{\text{w.s.}}{\longrightarrow} \frac{\Gamma\{[A],[X]\}}{\Gamma\{[A],[X]\}} & \overset{\text{w.s$$

 $\Gamma\{[[\Sigma]]\}$ 

#### Roadmap



Solution # 2 [Marin & Straßburger, 2014]

Can we get rid of the 45-closure condition?

Solution # 2 [Marin & Straßburger, 2014]

Can we get rid of the 45-closure condition?

YES: by adding to NK both the propagation rules X<sup>o</sup> and the structural rules X<sup>[]</sup>. The price to pay is that contraction is no longer admissible.

Theorem. For  $X = \{d, t, b, 4, 5\}$ , and  $\Gamma$  a set of formulas, it holds that  $\Gamma$  is derivable in  $NK_{ctr} \cup X_{ctr}^{\diamond} \cup X^{[]}$  iff  $\Gamma$  is X-valid.

Solution # 2 [Marin & Straßburger, 2014]

Can we get rid of the 45-closure condition?

YES: by adding to NK both the propagation rules X and the structural rules X<sup>[]</sup>. The price to pay is that contraction is no longer admissible.

Theorem. For  $X = \{d, t, b, 4, 5\}$ , and  $\Gamma$  a set of formulas, it holds that  $\Gamma$  is derivable in  $NK_{ctr} \cup X_{ctr}^{\Diamond} \cup X^{[]}$  iff  $\Gamma$  is X-valid.

Can we get rid of the propagation rules, and use  $NK_{ctr} \cup X^{[1]}$ ?

Solution # 2 [Marin & Straßburger, 2014]

Can we get rid of the 45-closure condition?

YES: by adding to NK both the propagation rules  $X^{\Diamond}$  and the structural rules  $X^{[]}$ . The price to pay is that contraction is no longer admissible.

Theorem. For  $X = \{d, t, b, 4, 5\}$ , and  $\Gamma$  a set of formulas, it holds that  $\Gamma$  is derivable in  $NK_{ctr} \cup X_{ctr}^{\Diamond} \cup X^{[]}$  iff  $\Gamma$  is X-valid.

Can we get rid of the propagation rules, and use  $NK_{ctr} \cup X^{[]}$ ?

NO, some combinations are incomplete, and one example is given in [Marin & Straßburger, 2014].

#### Summing up

|                        | fml.<br>interpr. | invertible<br>rules | analyti-<br>city | termination proof search | counterm.<br>constr. | modu-<br>larity |
|------------------------|------------------|---------------------|------------------|--------------------------|----------------------|-----------------|
| G3cp                   | yes              | yes                 | yes              | yes, easy!               | yes, easy!           | n/a             |
| G3K                    | yes              | no                  | yes              | yes, easy!               | yes, not easy        | no              |
| $NK \cup X^{\diamond}$ | yes              | yes                 | yes              | yes                      | yes                  | 45-clause       |

Beyond nested sequents

Other 'structured' approaches to define proof systems for modal logics:

#### Beyond nested sequents

Other 'structured' approaches to define proof systems for modal logics:

- Hypersequents for S5
- → Introduced by: [Mints, 1968], [Pottinger, 1983], [Avron, 1987]
- To get started: [Poggiolesi, 2008], [Lellmann, 2016]
  A hypersequent  $\mathcal{H}$  is a finite multiset of sequents:

$$\begin{array}{c|c} \Gamma_{1} \Rightarrow \Delta_{1} \mid ... \mid \Gamma_{\underline{n}} \Rightarrow \Delta_{n} \\ & \square_{L} \\ \hline \mathcal{H} \mid \square A, \Gamma \Rightarrow \Delta \mid \Sigma \Rightarrow \Delta \\ \hline \mathcal{H} \mid \square A, \Gamma \Rightarrow \Delta \mid \Sigma \Rightarrow \Delta \end{array} \quad \overset{\mathcal{H}}{\underbrace{\mathcal{H} \mid A, \square A, \Gamma \Rightarrow \Delta}} \quad \overset{\square_{R}}{\underbrace{\mathcal{H} \mid \Gamma \Rightarrow \Delta \mid \Rightarrow A}} \\ \xrightarrow{\mathcal{H} \mid \Gamma \Rightarrow \Delta, \square A} \end{array}$$

#### Beyond nested sequents

Other 'structured' approaches to define proof systems for modal logics:

► Hypersequents for S5
 Introduced by: [Mints, 1968], [Pottinger, 1983], [Avron, 1987]
 To get started: [Poggiolesi, 2008], [Lellmann, 2016]
 A hypersequent ℋ is a finite multiset of sequents:

$$\Gamma_{1} \Rightarrow \Delta_{1} \mid ... \mid \Gamma_{n} \Rightarrow \Delta_{n}$$

$$\stackrel{\square_{L}}{\mathcal{H}} \stackrel{\square}{\sqcup} A, \Gamma \Rightarrow \Delta \mid \Sigma \Rightarrow \Delta \qquad \stackrel{!}{\mathcal{H}} \stackrel{!}{\sqcup} A, \Gamma \Rightarrow \Delta \qquad \stackrel{\square_{R}}{\mathcal{H}} \stackrel{!}{\sqcup} \Gamma \Rightarrow \Delta \mid \Rightarrow A \qquad \stackrel{\square_{R}}{\mathcal{H}} \stackrel{!}{\sqcup} \Gamma \Rightarrow \Delta, \square A$$

 Display calculi, for (temporal) logics with backward modality [Belnap, 1982], [Kracht, 1996], [Wansing, 1994]

#### Beyond nested sequents

Other 'structured' approaches to define proof systems for modal logics:

► Hypersequents for S5
 Introduced by: [Mints, 1968], [Pottinger, 1983], [Avron, 1987]
 To get started: [Poggiolesi, 2008], [Lellmann, 2016]
 A hypersequent H is a finite multiset of sequents:

$$\Gamma_{1} \Rightarrow \Delta_{1} \mid ... \mid \Gamma_{n} \Rightarrow \Delta_{n}$$

$$\stackrel{\square}{\longrightarrow} \frac{\mathcal{H} \mid \square A, \Gamma \Rightarrow \Delta \mid \Sigma \Rightarrow \Delta}{\mathcal{H} \mid \square A, \Gamma \Rightarrow \Delta} \qquad \stackrel{\square}{\longrightarrow} \frac{\mathcal{H} \mid \Gamma \Rightarrow \Delta \mid \Rightarrow A}{\mathcal{H} \mid \Gamma \Rightarrow \Delta, \square A}$$

- Display calculi, for (temporal) logics with backward modality [Belnap, 1982], [Kracht, 1996], [Wansing, 1994]
- ▶ Linear nested sequents, lists of sequents [Lellmann, 2015]

#### Beyond nested sequents

Other 'structured' approaches to define proof systems for modal logics:

► Hypersequents for S5
 Introduced by: [Mints, 1968], [Pottinger, 1983], [Avron, 1987]
 To get started: [Poggiolesi, 2008], [Lellmann, 2016]
 A hypersequent H is a finite multiset of sequents:

$$\begin{array}{c|c} \Gamma_1 \Rightarrow \Delta_1 \mid ... \mid \Gamma_n \Rightarrow \Delta_n \\ \\ \frac{\mathcal{H} \mid \Box A, \Gamma \Rightarrow \Delta \mid \Sigma \Rightarrow \Delta}{\mathcal{H} \mid \Box A, \Gamma \Rightarrow \Delta \mid \Sigma \Rightarrow \Delta} & \frac{\mathcal{H} \mid A, \Box A, \Gamma \Rightarrow \Delta}{\mathcal{H} \mid \Box A, \Gamma \Rightarrow \Delta} & \overset{\Box_R}{\mathcal{H} \mid \Gamma \Rightarrow \Delta \mid \Rightarrow A} \\ \\ \frac{\mathcal{H} \mid \Box A, \Gamma \Rightarrow \Delta \mid \Sigma \Rightarrow \Delta}{\mathcal{H} \mid \Gamma \Rightarrow \Delta \mid \Delta} & \frac{\mathcal{H} \mid \Gamma \Rightarrow \Delta \mid \Rightarrow A}{\mathcal{H} \mid \Gamma \Rightarrow \Delta, \Box A} \end{array}$$

- Display calculi, for (temporal) logics with backward modality [Belnap, 1982], [Kracht, 1996], [Wansing, 1994]
- ▶ Linear nested sequents, lists of sequents [Lellmann, 2015]
- ▶ .. and many more! For an overview: [Lyon et al., 2025]

End of content for today's lecture!

Questions?

#### **Exercises**

$$d \square A \rightarrow \Diamond A$$

$$t \square A \rightarrow A$$

b 
$$A \rightarrow \Box \Diamond A$$

4 
$$\Box A \rightarrow \Box \Box A$$

$$5 \diamondsuit A \rightarrow \Box \diamondsuit A$$

- 1. For  $X \in \{d, t, b, 4, 5\}$ , show that the axiom X is derivable in the nested sequent calculus NK  $\cup$  X $^{\diamond}$ .
- 2. Show that axiom 4 is valid in all  $\{t, 5\}$ -frames, but it is **not** derivable in NK  $\cup \{t^{\diamond}, 5^{\diamond}\}$ . Show that the axiom is derivable in NK  $\cup \{t^{[]}, 5^{[]}\}$ .
- 3. Show that 4 is valid in all  $\{b, 5\}$ -frames, but it is **not** derivable in  $NK \cup \{b^{\Diamond}, 5^{\Diamond}\}$ . Show that the axiom is derivable in  $NK \cup \{b^{[]}, 5^{[]}\}$ .
- 4. Derive axioms t, b and 5 in the hypersequent calculus for S5.