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Recap



Today’s lecture: Nested Sequents

▷ Nested sequents for K

▷ Nested sequents for the S5-cube



Nested sequents for K



Nested sequents in the literature

Independently introduced in:

▷ [Bull, 1992]; [Kashima, 1994] ⇝ nested sequents

▷ [Brünnler, 2006], [Brünnler, 2009] ⇝ deep sequents

▷ [Poggiolesi, 2008], [Poggiolesi, 2010] ⇝ tree-hypersequents

Main references for this lecture:

▷ [Lellmann & Poggiolesi, 2022 (arXiv)]

▷ [Brünnler, 2009], [Brünnler, 2010 (arXiv)]

▷ [Marin & Straßburger, 2014]



One-sided sequents

Sequent Γ⇒ ∆ Γ,∆ multisets of formulas

One-sided sequent Γ Γ multiset of formulas

A ,B ::= p | p | A ∧ B | A ∨ B

A ∧ B := A ∨ B A ∨ B := A ∧ B

A → B := A ∨ B ⊥ := p ∧ p

Rules of G3cpone

init
Γ, p, p

Γ,A Γ,B
∧

Γ,A ∧ B

Γ,A ,B
∨

Γ,A ∨ B

Exercise. ⊢G3cp Γ⇒ ∆ iff ⊢G3cpone Γ,∆, where Γ = {A | A ∈ Γ}.
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Nested sequents for modal logic

A ,B ::= p | p | A ∧ B | A ∨ B | □A | ^A

A ∧ B := A ∨ B A ∨ B := A ∧ B □A := ^A ^A := □A

A → B := A ∨ B ⊥ := p ∧ p

Nested sequents (denoted Γ,∆, . . . ) are inductively generated as follows:

▷ A multiset of formulas is a nested sequent;
▷ If Γ and ∆ are nested sequents, then Γ,∆ is a nested sequent;
▷ If Γ is a nested sequent, then [Γ] is a nested sequent.

We call [Γ] a boxed sequent.

Nested sequents are multisets of formulas and boxed sequents:

A1, . . . ,Am, [∆1], . . . , [∆n]
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Trees

Γ = A1, . . . ,Am, [∆1], . . . , [∆n]

To a nested sequent Γ there corresponds the following tree tr(Γ), whose
nodes γ, δ, . . . are multisets of formulas:

The formula interpretation i(Γ) of a nested sequent Γ is defined as:

▷ If m = n = 0, then i(Γ) := ⊥

▷ Otherwise, i(Γ) := A1 ∨ · · · ∨ Am ∨ □(i(∆1)) ∨ · · · ∨ □(i(∆n))



Examples



Contexts

A context is a nested sequent with one or multiple holes, denoted by { },
each taking the place of a formula in the nested sequent.

▷ Unary context Γ{ }

⇝ Γ{∆}: filling Γ{ } with a nested sequent ∆

▷ Binary context Γ{ }{ }

⇝ Γ{∆1}{∆2}: filling Γ{ }{ } with ∆1,∆2

The depth depth(Γ{ }) of a unary context Γ{ } is defined as:

▷ depth({ }) := 0;

▷ depth(Γ{ },∆) := depth(Γ{ });

▷ depth([Γ{ }]) := depth(Γ{ }) + 1.
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Rules of NK

init
Γ{p, p}

Γ{A } Γ{B}
∧

Γ{A ∧ B}

Γ{A ,B}
∨

Γ{A ∨ B}

Γ{[A ]}
□
Γ{□A }

Γ{^A , [A ,∆]}
^

Γ{^A , [∆]}

Example. Proof of (^p→ □q)→ □(p→ q) in NK

init
^p, [p, p̄, q]

^
^p, [p̄, q]

init
^q̄, [q̄, p̄, q]

^
^q̄, [p̄, q]

∧

^p ∧ ^q̄, [p̄, q]
∨

^p ∧ ^q̄, [p̄ ∨ q]
□
^p ∧ ^q̄,□(p̄ ∨ q)

∨

(^p ∧ ^q̄) ∨ □(p̄ ∨ q)
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Roadmap



Validity of nested sequents [Kuznets & Straßburger, 2018]

For a nested sequent Γ and a modelM = ⟨W ,R , v⟩, anM-map for Γ is a
map f : tr(Γ)→ W such that whenever δ is a child of γ in tr(Γ), then
f(γ)Rf(δ).

A nested sequent Γ is satisfied by anM-map for Γ iff

M, f(δ) |= B , for some δ ∈ tr(Γ), for some B ∈ δ

A nested sequent Γ is refuted by anM-map for Γ iff

M, f(δ) ̸|= B , for all δ ∈ tr(Γ), for all B ∈ δ

A nested sequent is valid iff it is satisfied by allM-maps for Γ, for all
modelsM.
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Soundness of NK

Lemma. If Γ is derivable in NK then Γ is valid in all Kripke frames.



Roadmap



Completeness of NK

Γ{∅}
wk

Γ{∆}

Γ{∆,∆}
ctr

Γ{∆}

Γ{A } Γ{A }
cut

Γ{∅}

Lemma. The rules wk and ctr are hp-admissible in NK.

Lemma. All the rules of NK are hp-invertible.

Theorem. The cut rule is admissible in NK.

Proof sketch. Assume that the two premisses of cut are derivable in NK,
and show how to construct a derivation of the conclusion of the
conclusion. Lexicographic induction on (c, h).
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One cut reduction case
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Roadmap

Theorem. If Γ ⊢ A , then the nested sequent Γ̄ ∨ A is derivable in NK.



Semantic completeness

Lemma (Proof or Countermodel). For Γ nested sequent, either Γ is derivable
in NK or there is anM-map for Γ such that Γ is refuted by theM-map.

Theorem (Semantic Completeness). If Γ |= A , then the nested sequent
Γ̄ ∨ A is derivable in NK.
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Example

init
^(p̄ ∧ q̄), [p̄, p],□q

^(p̄ ∧ q̄), [q̄, p], [p̄, q]
init
^(p̄ ∧ q̄), [q̄, p], [q̄, q]

∧

^(p̄ ∧ q̄), [q̄, p], [p̄ ∧ q̄, q]
^

^(p̄ ∧ q̄), [q̄, p], [q]
□
^(p̄ ∧ q̄), [q̄, p],□q

∧

^(p̄ ∧ q̄), [p̄ ∧ q̄, p],□q
^

^(p̄ ∧ q̄), [p],□q
□
^(p̄ ∧ q̄),□p,□q

∨

^(p̄ ∧ q̄),□p ∨ □q
∨

^(p̄ ∧ q̄) ∨ (□p ∨ □q)



Nested sequents for the S5-cube



Rules for extensions: NK ∪ X^

Γ{^A , [A ]}
d^

Γ{^A }

Γ{^A ,A }
t^

Γ{^A }

Γ{[∆,^A ],A }
b^

Γ{[∆,^A ]}

Γ{^A , [^A ,∆]}
4^

Γ{^A , [∆]}

Γ{^A }{^A }
5^ depth(Γ{ }{∅}) > 0

Γ{^A }{∅}

For X ⊆ {d, t, b, 4, 5}, we write X^ for the corresponding subset of
{d^, t^, b^, 4^, 5^}. We shall consider the calculi NK ∪ X^.

Example. Proof of □p→ □□p in NK ∪ {t, 4}

init
^p̄, [^p̄, [^p̄, p̄, p]]

t^

^p̄, [^p̄, [^p̄, p]]
4^

^p̄, [^p̄, [p]]
4^

^p̄, [[p]]
□
^p̄, [□p]
□
^p̄,□□p

∨

^p̄ ∨ □□p
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{d^, t^, b^, 4^, 5^}. We shall consider the calculi NK ∪ X^.

Example. Proof of □p→ □□p in NK ∪ {t, 4}

init
^p̄, [^p̄, [^p̄, p̄, p]]

t^

^p̄, [^p̄, [^p̄, p]]
4^

^p̄, [^p̄, [p]]
4^

^p̄, [[p]]
□
^p̄, [□p]
□
^p̄,□□p

∨

^p̄ ∨ □□p



Rules for extensions: NK ∪ X^
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Γ{^A ,A }
t^

Γ{^A }

Γ{[∆,^A ],A }
b^

Γ{[∆,^A ]}

Γ{^A , [^A ,∆]}
4^

Γ{^A , [∆]}

Γ{^A }{^A }
5^ depth(Γ{ }{∅}) > 0

Γ{^A }{∅}

For X ⊆ {d, t, b, 4, 5}, we write X^ for the corresponding subset of
{d^, t^, b^, 4^, 5^}. We shall consider the calculi NK ∪ X^.

Example. Proof of □p→ □□p in NK ∪ {t, 4}

init
^p̄, [^p̄, [^p̄, p̄, p]]

t^

^p̄, [^p̄, [^p̄, p]]
4^

^p̄, [^p̄, [p]]
4^

^p̄, [[p]]
□
^p̄, [□p]
□
^p̄,□□p

∨

^p̄ ∨ □□p



Structural rules [Brünnler, 2009]

For X ⊆ {d, t, b, 4, 5}:

Lemma. The rules wk and ctr are hp-admissible in NK ∪ X^.

Lemma. All the rules of NK ∪ X^ are hp-invertible.

Proposition. Rule 5^ is derivable in NK ∪ {5^1 , 5
^
2 , 5

^
3 } ∪ {ctr}.

Γ{^A }{^A }
5^ depth(Γ{ }{∅}) > 0

Γ{^A }{∅}

Γ{[∆,^A ],^A }
5^1

Γ{[∆,^A ]}

Γ{[∆,^A ], [Λ,^A ]}
5^2

Γ{[∆,^A ], [Λ]}

[∆,^A , [Λ,^A ]]
5^3

Γ{[∆,^A , [Λ]]}

For X ⊆ {d, t, b, 4, 5}, a nested sequent is X-valid iff it is satisfied by all
M-maps for Γ, for all modelsM satisfying the frame conditions in X.

Theorem. If Γ is derivable in NK ∪ X^ then Γ is valid in all X-frames.
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Three problems for completeness

▷ Axiom 5, that is, ^A → □^A , is valid in all {b, 4}-frames, but it is not
derivable in NK ∪ {b^, 4^}.

▷ Axiom 4, that is, A → □□A , is valid in all {t, 5}-frames, but it
is not derivable in NK ∪ {t^, 5^}.

▷ Axiom 4, that is, A → □□A , is valid in all {b, 5}-frames, but it is not
derivable in NK ∪ {b^, 5^}.

Failed proof of ^A → □^A in NK ∪ {b^, 4^}

[p̄], p, [^p]
b^

[p̄], [^p]
□
□p̄, [^p]
□
□p̄,□^p

∨

□p̄ ∨ □^p
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Solution # 1 [Brünnler, 2009]

For each set of frames characterised by the 5-axioms, there is at least
one combination of modal rules which is complete.

For X ⊆ {d, t, b, 4, 5}, the 45-closure of X is defined as:

X̂ =


X ∪ {4} if {b, 5} ⊆ X or {t, 5} ⊆ X
X ∪ {5} if {b, 4} ⊆ X
X otherwise

We say that X is 45-closed if X = X̂.

Proposition. For X ⊆ {d, t, b, 4, 5} X is 45-closed iff, for ρ ∈ {4, 5}, it holds that
if ρ is valid in all X-frames, then ρ ∈ X.

To prove:

Theorem (Completeness). For X ⊆ {d, t, b, 4, 5}, if Γ is X-valid, then Γ is
derivable in NK ∪ X̂^.
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Solution # 1 - Syntactic completeness [Brünnler, 2009]

Theorem (Cut-elimination). For X ⊆ {d, t, b, 4, 5} 45-closed, if Γ is derivable
in NK ∪ X^ ∪ {cut}, then it is derivable in NK ∪ X^.

The proof uses:

▷ A generalised version of cut (Y-cut, eliminable)

Γ{[A ], [∆]}
□
Γ{□A , [∆]}

Γ{^A , [^A ,∆]}
tr^

Γ{^A , [∆]}
cut

Γ{[∆]}

▷ Additional structural modal rules (admissible)
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Example: 4-cut

Γ{A } Γ{A }
cut

Γ{∅}

Γ{□A }{∅}n Γ{^A }{^A }n
Y-cut

Γ{∅}{∅}n

If Y = {4}, then Γ{ }{ }n is of the form Γ1{{ }, Γ2{ }
n}:

Γ1{{□A }, Γ2{∅}
n} Γ1{{^A }, Γ2{^A }n}

4-cut
Γ1{{∅}, Γ2{∅}

n}

Γ{[A ], [∆]}
□
Γ{□A , [∆]}

Γ{^A , [^A ,∆]}
4^

Γ{^A , [∆]}
cut

Γ{[∆]}

⇝

Γ{[A ], [∆]}
□
Γ{□A , [∆]} Γ{^A , [^A ,∆]}

4-cut
Γ{[∆]}



cut and Y-cut

Γ{A } Γ{A }
cut

Γ{∅}

Γ{□A }{∅}n Γ{^A }{^A }n
Y-cut

Γ{∅}{∅}n

In the Y-cut:

▷ {∆}n denotes

n times︷       ︸︸       ︷
{∆} . . . {∆};

▷ n ≥ 0;

▷ Y ⊆ {4, 5};

▷ there is a derivation of Γ{^A }{^A }n to Γ{^A }{∅}n in system Y^.



Example: 4-cut
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4-cut
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4-cut
Γ{[∆]}



Structural modal rules

Γ{[∅]}
d[ ]

Γ{∅}

Γ{[∆]}
t[ ]

Γ{∆}

Γ{[Σ, [∆]]}
b[ ]

Γ{∆, [Σ]}

Γ{[∆], [Σ]}
4[ ]

Γ{[[∆],Σ]}

Γ{[∆]}{∅}
5[ ] depth(Γ{ }{[∆]}) > 0

Γ{∅}{[∆]}

For X ⊆ {d, t, b, 4, 5}, we write X[ ] for the corresponding subset of
{d[ ], t[ ], b[ ], 4[ ], 5[ ]}.

Example. Proof of ^A → □^A in NK ∪ {b[ ], 4[ ]}

init
[[[p̄, p],^p]]

^
[[[p̄],^p]]

4[ ]

[[[p̄]],^p]
b[ ]

[p̄], [^p]
□
□p̄, [^p]
□
□p̄,□^p

∨

□p̄ ∨ □^p
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Example. Proof of ^A → □^A in NK ∪ {b[ ], 4[ ]}

init
[[[p̄, p],^p]]

^
[[[p̄],^p]]

4[ ]

[[[p̄]],^p]
b[ ]

[p̄], [^p]
□
□p̄, [^p]
□
□p̄,□^p

∨

□p̄ ∨ □^p



Cut-admissibility

Theorem (Cut-admissibility). For X ⊆ {d, t, b, 4, 5} 45-closed, the cut rule
and the Y-cut rule are admissible in NK ∪ X^.

Γ{[A ], [∆]}
□
Γ{□A , [∆]}

Γ{^A , [^A ,∆]}
4^

Γ{^A , [∆]}
cut

Γ{[∆]}

⇝

Γ{[A ], [∆]}
□
Γ{□A , [∆]} Γ{^A , [^A ,∆]}

4-cut
Γ{[∆]}

Γ{[A ], [[Σ]]}
□
Γ{□A , [[Σ]]}

Γ{^A , [^A , [A ,Σ]]}
^

Γ{^A , [^A , [Σ]]}
4-cut

Γ{[[Σ]]}

⇝

⇝

Γ{[A ], [[Σ]]}
4[ ]

Γ{[[A ], [Σ]]}
4[ ]

Γ{[[A ,Σ]]}

Γ{[A ], [[Σ]]}
□
Γ{□A , [[Σ]]}

wk
Γ{□A , [[A ,Σ]]} Γ{^A , [^A , [A ,Σ]]}

4-cut
Γ{[[A ,Σ]]}

cut
Γ{[[Σ]]}



Roadmap



Solution # 2 [Marin & Straßburger, 2014]

Can we get rid of the 45-closure condition?

YES: by adding to NK both the propagation rules X^ and the structural
rules X[ ]. The price to pay is that contraction is no longer admissible.

Theorem. For X = {d, t, b, 4, 5}, and Γ a set of formulas, it holds that
Γ is derivable in NKctr ∪ X^ctr ∪ X[ ] iff Γ is X-valid.

Can we get rid of the propagation rules, and use NKctr ∪ X[ ] ?

NO, some combinations are incomplete, and one example is given in
[Marin & Straßburger, 2014].
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Summing up

fml. invertible analyti- termination counterm. modu-
interpr. rules city proof search constr. larity

G3cp yes yes yes yes, easy! yes, easy! n/a

G3K yes no yes yes, easy! yes, not easy no

NK ∪ X^ yes yes yes yes yes 45-clause



Beyond nested sequents

Other ‘structured’ approaches to define proof systems for modal logics:

ω Hypersequents for S5
Introduced by: [Mints, 1968], [Pottinger, 1983], [Avron, 1987]
To get started: [Poggiolesi, 2008], [Lellmann, 2016]
A hypersequent H is a finite multiset of sequents:

!1 → ”1 | .. | !n → ”n

H | ↭A ,!→ ” | #→ ”
↭L
H | ↭A ,!→ ” | #→ ”

H | A ,↭A ,!→ ”
t
H | ↭A ,!→ ”

H | !→ ” |→ A
↭R
H | !→ ”,↭A

ω Display calculi, for (temporal) logics with backward modality
[Belnap, 1982], [Kracht, 1996], [Wansing, 1994]

ω Linear nested sequents, lists of sequents [Lellmann, 2015]

ω .. and many more! For an overview: [Lyon et al., 2025]
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End of content for today’s lecture!

Questions?



Exercises

d ↭A ↑ !A
t ↭A ↑ A
b A ↑ ↭!A
4 ↭A ↑ ↭↭A
5 !A ↑ ↭!A

1. For X ↓ {d, t, b, 4, 5}, show that the axiom X is derivable in the
nested sequent calculus NK ↔ X!.

2. Show that axiom 4 is valid in all {t, 5}-frames, but it is not derivable in
NK ↔ {t!, 5!}. Show that the axiom is derivable in NK ↔ {t[ ], 5[ ]

}.
3. Show that 4 is valid in all {b, 5}-frames, but it is not derivable in

NK ↔ {b!, 5!}. Show that the axiom is derivable in NK ↔ {b[ ], 5[ ]
}.

4. Derive axioms t, b and 5 in the hypersequent calculus for S5.


