Take-home exam

Proof Theory of Modal Logic Tsinghua Logic Summer School, July 2025

This exam contains 6 questions, for a total of 20 points. Question 7 is a bonus question, a bit more difficult, which will allow you to gain 3 extra points. The deadline is Monday 21 July, at 23:59. Good luck!

Question 1 (3 points). In this exercises we work with G3cp, the sequent calculus for classical propositional logic. Consider the following rule of *converse weakening*:

$$_{\mathrm{cwk}}\frac{p,\Gamma\Rightarrow\Delta}{\Gamma\Rightarrow\Delta}$$

Is the rule derivable? Is the rule admissible? Motivate your answer to both questions.

Question 2 (3 points). In this exercise we work with the nested sequent calculus NK for modal logic K. Prove that \Box^c , the *cumulative* version of rule \Box , is admissible in NK. You can use (without proof) admissibility of weakening and contraction in NK, as well as invertibility of all the rules of NK.

$$\Box \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} \qquad \qquad \Box^{\mathsf{c}} \frac{\Gamma\{\Box A, [A]\}}{\Gamma\{\Box A\}}$$

Is rule \Box^{c} height-preserving admissible in NK? Why?

Question 3 (3 points). Write down the labelled rule den corresponding to the frame condition of *density*, that is:

$$\forall x \forall y (xRy \rightarrow \exists k (xRk \land kRy))$$

Then, derive the formula $\Diamond p \to \Diamond \Diamond p$ in labK $\cup \{\mathsf{den}\}$.

Question 4 (3 points). We want to show that formula $p \vee \Box(\Box p \to \bot)$ is valid in modal logic S5. Construct a derivation for the formula, using either the labelled calculus labK \cup {ref, sym, tr} or the nested calculus NK \cup {t $^{\Diamond}$, b $^{\Diamond}$, 4 $^{\Diamond}$, 5 $^{\Diamond}$ }.

Next, we want to check whether the formula is valid in K. Using either labK or NK, construct a proof of the formula or show that the formula is not derivable in the calculus. In case the formula is not derivable, produce a countermodel for it, that is, find a model \mathcal{M} and a world x such that $\mathcal{M}, x \not\models p \vee \Box(\Box p \to \bot)$ (you can look at the countermodel construction we saw in Lecture 4).

Question 5 (4 points). In this exercise we work with *hypersequents*, a proof system for modal logic S5. We use the language of classical propositional logic with implication but without \Diamond , that is:

$$A ::= p \mid \bot \mid A \land A \mid A \lor A \mid A \rightarrow A \mid \Box A$$

We set $\neg A := A \to \bot$ and $\Diamond A := \neg \Box \neg A$.

Recall that in the models for S5 the accessibility relation R is a reflexive, transitive and symmetric relation. We shall refer to these models as "S5-models". Hypersequents enrich the *structure* of Gentzen-style sequents by introducing an additional structural connective, |, which is interpreted as a disjunction. Formally, a hypersequent \mathcal{H} is a multiset of sequents, that is, the following object where, for $n \geq 0$, and for $i \leq n$, every Γ_i , Δ_i is a multiset of formulas:

$$\mathcal{H} = \Gamma_1 \Rightarrow \Delta_1 \mid \dots \mid \Gamma_n \Rightarrow \Delta_n$$

The rules of the hypersequent calculus are the following¹:

$$\begin{split} & \inf \frac{\mathcal{H} \mid p, \Gamma \Rightarrow \Delta, p}{\mathcal{H} \mid p, \Gamma \Rightarrow \Delta, p} \quad ^{\perp_{L}} \frac{\mathcal{H} \mid \Delta, \Gamma \Rightarrow \Delta}{\mathcal{H} \mid \bot, \Gamma \Rightarrow \Delta} \quad ^{\wedge_{L}} \frac{\mathcal{H} \mid A, B, \Gamma \Rightarrow \Delta}{\mathcal{H} \mid A \land B, \Gamma \Rightarrow \Delta} \\ & \wedge_{R} \frac{\mathcal{H} \mid \Gamma \Rightarrow \Delta, A \quad \mathcal{H} \mid \Gamma \Rightarrow \Delta, B}{\mathcal{H} \mid \Gamma \Rightarrow \Delta, A \land B} \quad _{\vee_{L}} \frac{\mathcal{H} \mid A, \Gamma \Rightarrow \Delta}{\mathcal{H} \mid A \lor B, \Gamma \Rightarrow \Delta} \\ & \qquad ^{\vee_{R}} \frac{\mathcal{H} \mid \Gamma \Rightarrow \Delta, A \land B}{\mathcal{H} \mid \Gamma \Rightarrow \Delta, A \lor B} \\ & \rightarrow_{L} \frac{\mathcal{H} \mid \Gamma \Rightarrow \Delta, A \quad \mathcal{H} \mid B, \Gamma \Rightarrow \Delta}{\mathcal{H} \mid A \rightarrow B, \Gamma \Rightarrow \Delta} \quad \rightarrow_{R} \frac{\mathcal{H} \mid A, \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \rightarrow B} \\ & \qquad ^{\square_{L}} \frac{\mathcal{H} \mid \Box A, \Gamma \Rightarrow \Delta \mid A, \Sigma \Rightarrow \Delta}{\mathcal{H} \mid \Box A, \Gamma \Rightarrow \Delta} \quad _{\square_{R}} \frac{\mathcal{H} \mid \Gamma \Rightarrow \Delta \mid \Rightarrow A}{\mathcal{H} \mid \Gamma \Rightarrow \Delta, \Box A} \end{split}$$

We say that a hypersequent \mathcal{H} is S5-valid iff there is a sequent $\Gamma\Rightarrow\Delta\in\mathcal{H}$ which is S5-valid. The notion of S5-validity of a sequent is similar to the same we saw in Homework 1, namely: Given a sequent $\Gamma\Rightarrow\Delta$, a S5-model \mathcal{M} and a world x of \mathcal{M} , we say that $\Gamma\Rightarrow\Delta$ is S5-satisfiable at \mathcal{M},x (notation: $\mathcal{M},x\models\Gamma\Rightarrow\Delta$) iff the following holds: if for all formulas $G\in\Gamma$ it holds that $\mathcal{M},x\models G$, then there is a formula $D\in\Delta$ such that $\mathcal{M},x\models D$. We say that $\Gamma\Rightarrow\Delta$ is satisfiable iff there are \mathcal{M},x such that $\mathcal{M},x\models\Gamma\Rightarrow\Delta$. A sequent $\Gamma\Rightarrow\Delta$ is S5-valid iff, for all S5-models \mathcal{M} and for all worlds x, it holds that $\mathcal{M},x\models\Gamma\Rightarrow\Delta$.

- a) Construct proofs for formulas $\Diamond p \to \Box \Diamond p$ and $\Box p \to \Box \Box p$ in the hypersequent calculus for S5.
- b) Prove that the hypersequent rule \square_{R} is sound, that is: if its premiss is S5-valid, then its conclusion is S5-valid.
- c) Suppose that we now add ◊ as a primitive operator in our language. What rules we would need to add to the hypersequent system to treat ◊? Write down the rules.

Hint: you can find them by thinking of the definition of \Diamond in terms of \Box .

Question 6 (4 points). In this exercise, we wish to establish a translation between the G3-sequent calculus G3K and the labelled sequent calculus labK. Both of these are proof systems for modal logic K.

 $^{^{1}\}mathrm{This}$ version of the rules is correct; the version given in the slides of Lecture 2 contains a typo.

First, we define a translation function T_x which, given a label x, maps sequents into labelled sequents. For Γ multiset of formulas, we write $x:\Gamma$ to denote the multiset $\{x:G\mid G\in\Gamma\}$. The translation T_x is defined as follows:

$$\mathsf{T}_x(\Gamma \Rightarrow \Delta) = x : \Gamma \Rightarrow x : \Delta$$

In words, the translation 'labels' all the formulas in Γ and Δ with the same label x. So, for instance, $\mathsf{T}_x(A,B\Rightarrow C)=x{:}A,x{:}B\Rightarrow x{:}C.$

Next, we shall prove the following result:

Theorem 1. If the sequent $\Gamma \Rightarrow \Delta$ is derivable in **G3K**, then the labelled sequent $\mathsf{T}_x(\Gamma \Rightarrow \Delta)$ is derivable in labK.

The proof proceeds by induction on the height h of the derivation of $\Gamma \Rightarrow \Delta$ in **G3K**. Prove the base case (h=0) and, for the inductive step (h=n+1), prove the case in which the last rule applied in the derivation of $\Gamma \Rightarrow \Delta$ is k:

$$\mathsf{k} \frac{\Sigma \Rightarrow A}{\Gamma, \Box \Sigma \Rightarrow \Box A, \Delta}$$

Recall that $\Box \Sigma = \{ \Box S \mid S \in \Sigma \}$. You can use height-preserving admissibility of substitution, weakening and contraction in labK, as well as height-preserving invertibility of all the rules.

Question 7 (\star) (3 points). Continuing from Question 6, it is possible to establish a translation between the nested calculus NK and the labelled calculus labK. Write down a translation mapping nested sequents into labelled sequents.

Writing down the translation is quite difficult, also because nested sequents are one-sided, while labelled sequents are two-sided. It might help to use the following: for $\Gamma \Rightarrow \Delta$ and $\mathcal{R}', \Gamma' \Rightarrow \Delta'$ labelled sequents, we write $(\Gamma \Rightarrow \Delta) \otimes (\mathcal{R}', \Gamma' \Rightarrow \Delta')$ to denote the labelled sequent $\mathcal{R}, \mathcal{R}', \Gamma, \Gamma' \Rightarrow \Delta, \Delta'$.

To test whether your translation works, show how to translate an instance of application of rule \square from NK into the labelled calculus labK (you can ignore contexts).