Homework 3

Proof Theory of Modal Logic Tsinghua Logic Summer School, July 2025

Exercises marked with (\star) are not mandatory, but allow you to gain extra points.

Question 1 (3 points). Write down the labelled rule conf corresponding to the frame condition of *confluence*, that is:

$$\forall x \forall y \forall z \big((xRy \land xRz) \rightarrow \exists k (yRk \land zRk) \big)$$

Then, derive the formula $\Diamond \Box p \to \Box \Diamond p$ in labK $\cup \{\mathsf{conf}\}$.

Question 2 (3.5 points). Derive axiom 4, that is, $\Box A \rightarrow \Box \Box A$, in labK $\cup \{t, 5\}$. Then, show that rule tr is derivable in labK $\cup \{t, 5\} \cup \{\mathsf{wk}_{\mathsf{L}}, \mathsf{wk}_{\mathsf{R}}\}$.

Recall that $labK \cup \{t, 5\}$ consists of the rules of labK, plus the following rules (euc' is the contracted instance of euc):

$$\operatorname{ref} \frac{xRx,\mathcal{R},\Gamma\Rightarrow\Delta}{\mathcal{R},\Gamma\Rightarrow\Delta} \qquad \operatorname{euc} \frac{yRz,xRy,xRz,\mathcal{R},\Gamma\Rightarrow\Delta}{xRy,xRz,\mathcal{R},\Gamma\Rightarrow\Delta} \qquad \operatorname{euc'} \frac{yRy,xRy,\mathcal{R},\Gamma\Rightarrow\Delta}{xRy,\mathcal{R},\Gamma\Rightarrow\Delta}$$

The rule tr is the following rule:

tr
$$\frac{xRz, xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta}$$

Question 3 (3.5 points). We want to show that the rule \Diamond_L is *invertible*, that is, we want to prove the following statement:

If $\mathcal{R}, x: \Diamond A, \Gamma \Rightarrow \Delta$ is derivable in labK, then for every label $y \neq x$ which does not occur in $\mathcal{R} \cup \Gamma \cup \Delta$, it holds that $xRy, \mathcal{R}, y:A, \Gamma \Rightarrow \Delta$ is derivable in labK.

The proof proceeds by induction on the height of the derivation of $\mathcal{R}, x: \Diamond A, \Gamma \Rightarrow \Delta$, and by distinguishing cases according to the last rule applied in the derivation. Prove the statement for the case in which the last rule applied is $\square_{\mathbb{R}}$, that is, the derivation has the following form:

$$\Box_{\mathsf{R}} \frac{zRy, \mathcal{R}, x: \Diamond A, \Gamma \Rightarrow \Delta', y: B}{\mathcal{R}, x: \Diamond A, \Gamma \Rightarrow \Delta', z: \Box B}$$

Show how to construct a derivation of sequent xRy, $\mathcal{R}, y:A$, $\Gamma \Rightarrow \Delta', z:\Box B$. You can use (without proof) admissibility of substitution and weakening, seen in the lecture.

Question 4 (*) (2 points). Show that rule euc is derivable in labK \cup {b, 4} \cup {wk_L, wk_R}.

Recall that $labK \cup \{b,4\}$ consists of the rules of labK, plus the following rules:

$$\operatorname{sym} \frac{yRx,xRy,\mathcal{R},\Gamma\Rightarrow\Delta}{xRy,\mathcal{R},\Gamma\Rightarrow\Delta} \qquad \operatorname{tr} \frac{xRz,xRy,yRz,\mathcal{R},\Gamma\Rightarrow\Delta}{xRy,yRz,\mathcal{R},\Gamma\Rightarrow\Delta}$$

The rule euc is the following rule:

$$\operatorname{euc} \frac{yRz, xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, xRz, \mathcal{R}, \Gamma \Rightarrow \Delta}$$

Is rule euc derivable in $labK \cup \{b,4\}$? Is it admissible in $labK \cup \{b,4\}$? Why?