Homework 1

Proof Theory of Modal Logic Tsinghua Logic Summer School, July 2025

Exercises marked with (\star) are not mandatory, but allow you to gain extra points.

Question 1 (3 points). Consider the following rule efq (ex falso quodlibet):

$$\operatorname{efq} \frac{\Rightarrow \bot}{\Rightarrow A}$$

Is the rule derivable in **G3cp**? Is the rule admissible in **G3cp**? Motivate your answer to both questions.

Question 2 (3 points). In this exercise, we take $\neg A$ to be a shorthand for $A \to \bot$. Show that the following rules for negation are derivable in $\mathbf{G3cp} \cup \{\mathsf{wk}_\mathsf{L}, \mathsf{wk}_\mathsf{R}, \mathsf{ctr}_\mathsf{L}, \mathsf{ctr}_\mathsf{R}\}.$

$$\neg \mathbf{L} \frac{\Gamma \Rightarrow \Delta, A}{\neg A, \Gamma \Rightarrow \Delta} \qquad \qquad \neg \mathbf{R} \frac{A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg A}$$

Are the rules admissible in **G3cp**? Motivate your answer.

Question 3 (4 points). In this exercise, we want to prove soundness of G3K with respect to the semantics for K. We start with some definitions.

Given a sequent $\Gamma \Rightarrow \Delta$, a model \mathcal{M} and a world x of \mathcal{M} , we say that $\Gamma \Rightarrow \Delta$ is satisfiable at \mathcal{M}, x (notation: $\mathcal{M}, x \models \Gamma \Rightarrow \Delta$) iff the following holds: if for all formulas $G \in \Gamma$ it holds that $\mathcal{M}, x \models G$, then there is a formula $D \in \Delta$ such that $\mathcal{M}, x \models D$. We say that $\Gamma \Rightarrow \Delta$ is satisfiable iff there are \mathcal{M}, x such that $\mathcal{M}, x \models \Gamma \Rightarrow \Delta$. A sequent $\Gamma \Rightarrow \Delta$ is valid iff, for all models \mathcal{M} and for all worlds x, it holds that $\mathcal{M}, x \models \Gamma \Rightarrow \Delta$. We wish to prove one case of the following result:

Theorem 1. If $\vdash_{\mathbf{G3K}} \Gamma \Rightarrow \Delta$, then $\models \Gamma \Rightarrow \Delta$.

The proof proceeds by induction on the height of the derivation of $\Gamma \Rightarrow \Delta$. For the base case (h=0) we need to prove that the initial sequents of **G3K** are valid. For the inductive step (h>0), we need to prove that the rules of **G3K** preserve validity, that is: assuming that the premiss(es) of a rule are valid, we need to show that the conclusion of the rule is valid.

Show that rule k preserves validity, that is: if $\models \Sigma \Rightarrow A$ then $\models \Gamma, \Box \Sigma \Rightarrow \Box A, \Delta$.

$$\mathsf{k} \frac{\Sigma \Rightarrow A}{\Gamma, \Box \Sigma \Rightarrow \Box A, \Delta}$$

Hint: it is easier to prove the contrapositive statement, that is: if $\not\models \Gamma, \Box \Sigma \Rightarrow \Box A, \Delta$ then $\not\models \Sigma \Rightarrow A$.

Question 4 (*) (2 points). Show that if $\vdash_{\mathbf{G3cp}} \Gamma \Rightarrow \Delta, \bot$ then $\vdash_{\mathbf{G3cp}} \Gamma \Rightarrow \Delta$. You will need to reason by induction on the height h of the derivation of $\Gamma \Rightarrow \Delta, \bot$. If h = 0, then $\Gamma \Rightarrow \Delta, \bot$ is an initial sequent (and you need to show that also $\Gamma \Rightarrow \Delta$ is an initial sequent). If h > 0, then $\Gamma \Rightarrow \Delta, \bot$ has been derived by application of some rule R of $\mathbf{G3cp}$. Distinguish cases according to the shape of R, applying the inductive hypothesis to the premiss(es) of R. You can treat similar cases at the same time.